Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Unrestricted disposal of tannery solid waste (TSW) into agricultural soils has resulted in the contamination of heavy metals (HMs) such as chromium (Cr) cadmium (Cd), Copper (Cu), and Zinc (Zn) along with the severe potential to degrade the environmental quality around the world. In the present study, a combined phyto- and myco-remediation strategy was evaluated to enhance the growth, ionic contents, and phytoextraction potential of and for HMs from TSW-contaminated soil. A pot experiment was conducted in the greenhouse using single or combined inoculation of (Tp) and (An) in and under TSW-contaminated soil at different doses (0, 50, and 100%). The results showed that the growth parameters of both and were severely affected under 50 and 100% TSW treatment. The combined inoculation of both the fungal species ameliorated the positive impacts of 50 and 100% TSW application on growth and ionic contents accumulation in and . The combined application of An + Tp at 100% TSW enhanced the shoot length (87.8, 157.2%), root length (123.9, 120.6%), number of leaves (184.2, 175.0%), number of roots (104.7, 438.9%), and dry weight (179.4, 144.8%) of and , respectively as compared to control with any fungal treatment at 100% TSW. A single application of An at different doses of TSW enhanced the metal concentration in , whereas Tp increased the concentration of the metals in . The concentration of Cr in roots (196.2, 263.8%), shoots (342.4, 182.2%), Cu in roots (187.6, 137.0%), shoots (26.6, 76.0%), Cd in roots (245.2, 184.6%), shoots (142.1, 73.4%), Zn in roots (73.4, 57.5%), shoots (62.9, 57.6%), in were increased by the application of An at 50 and 100% treatment levels of TSW, respectively compared to control (C). Moreover, the HMs (Cr, Cu, Cd, and Zn) uptake was also improved under 50 and 100% TSW with the combined inoculation of Tp + An in both and . In conclusion, the combined inoculation of Tp + An was more effective in metal removal from TSW-treated soil.NOVELTY STATEMENTLimited studies have been conducted on filamentous fungi systematically under metal-contaminated sites for their diversity, metal tolerance, and their potential in enhancing the phytoremediation potential of different crop plants.In the present study, single and/or combined inoculation of fungal strains was found effective in alleviating different metals stress in tannery solid waste contaminated soil by improving defense mechanisms and plant growth due to the association between fungal strains and plants.The combined application of both fungal strains had an additive effect in enhancing the bioaccumulation capacity of and compared to their single inoculation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/15226514.2023.2166457 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!