Cardiac lipid accumulation and inflammation have been linked to stress. There is mounting evidence that estrogen reduces lipid deposition and has anti-inflammatory properties; however, the exact mechanism is unknown. Recent studies showed that NLRP3 inflammasome is a key trigger of cardiac inflammation, and it is also involved in the progression of metabolic diseases. This study investigated the crucial role of the NLRP3 inflammasome in lipid accumulation during stress and the regulatory mechanism of estrogen in this process. Stress models were established by isoproterenol treatments in mice and H9c2 cells. With 5 mM isoproterenol, NLRP3 inflammasome activation was observed earlier at 0.5 h than that of lipid accumulation at 1 h in H9c2 cells. At 1 h after stress, the isoproterenol concentration required for NLRP3 inflammasome activation was lower compared to the concentration required for lipid deposition in mice myocardia and H9c2 cells; the former required 210 mg/kg or 10 μM for activation while the latter required 280 mg/kg or 5 mM. Knocking out or inhibiting NLRP3 inflammasome reduced myocardial lipid accumulation caused by stress in the mice myocardia and H9c2 cells. Estrogen downregulated NLRP3 inflammasome and reduced lipid accumulation in cardiomyocytes during stress. Finally, the anti-inflammatory and lipid-lowering effect of estrogen disappeared in β2ARKO mice and H9c2 cells pre-treated with ICI118,551. In conclusion, the upregulation of NLRP3 inflammasome induced by stress led to myocardial lipid accumulation, and β2AR downregulated NLRP3 inflammasome thereby reducing lipid accumulation which was dependent on the estrogenic environment.

Download full-text PDF

Source
http://dx.doi.org/10.1530/JOE-22-0335DOI Listing

Publication Analysis

Top Keywords

nlrp3 inflammasome
32
lipid accumulation
28
h9c2 cells
20
lipid
9
estrogenic environment
8
stress
8
lipid deposition
8
nlrp3
8
inflammasome
8
mice h9c2
8

Similar Publications

PRRSV-2 nsp2 Ignites NLRP3 inflammasome through IKKβ-dependent dispersed trans-Golgi network translocation.

PLoS Pathog

January 2025

Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.

The NLRP3 inflammasome is a fundamental component of the innate immune system, yet its excessive activation is intricately associated with viral pathogenesis. Porcine reproductive and respiratory syndrome virus type 2 (PRRSV-2), belonging to the family Arteriviridae, triggers dysregulated cytokine release and interstitial pneumonia, which can quickly escalate to acute respiratory distress and death. However, a mechanistic understanding of PRRSV-2 progression remains unclear.

View Article and Find Full Text PDF

Background: Epilepsy, a neurological disorder characterized by recurrent seizures, presents considerable difficulties in treatment, particularly when dealing with drug-resistant cases. Dapsone, recognized for its anti-inflammatory properties, holds promise as a potential therapeutic option. However, its effectiveness in epilepsy requires further investigation.

View Article and Find Full Text PDF

NLRP3 deficiency aggravated DNFB-induced chronic itch by enhancing type 2 immunity IL-4/TSLP-TRPA1 axis in mice.

Front Immunol

January 2025

Department of Pain Management, The State Key Specialty in Pain Medicine, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.

Background: The nod-like receptor family pyrin domain-containing 3 (NLRP3) has been implicated in various skin diseases. However, its role in mediating 2, 4-dinitrofluorobenzene (DNFB)-induced chronic itch remains unclear.

Methods: Widetype () and deletion ( )mice, the expression of transient receptor potential (TRP) ankyrin 1 (TRPA1) inhibitor or recombinant mice interleukin-18 (IL-18) were used to establish and evaluate the severity of DNFB-mediated chronic itch.

View Article and Find Full Text PDF

Lysophosphatidylinositol (LPI) is an endogenous signaling molecule for the GPR55 receptor. Previous studies have shown that arachidonoyl-lysophosphatidylinositol (LPI-20:4) produced an increase in the inflammatory mediators NLPR3 (inflammasome - 3 marker) and IL-1b in neurons from both rat dorsal root ganglion (DRG) and hippocampal cultures. Because LPI is comprised of a family of lipid structures that vary in fatty acyl composition, the current work examined neuroinflammatory responses to various LPI structures in DRG and hippocampal cultures as assessed by high content fluorescent imaging.

View Article and Find Full Text PDF

Acute lung injury (ALI) is a clinically common disease with high mortality, characterized by tissue damage caused by excessive activation of inflammation. TRIM7 is an E3 ligase that plays an important role in regulating viral infection, tumor progression and innate immune response. But its function in ALI is unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!