Size-dependent chiro-optical properties of CsPbBr nanoparticles.

Nanoscale

Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA.

Published: February 2023

Chiral metal halide perovskites have garnered substantial interest because of their promising properties for application in optoelectronics and spintronics. Understanding the mechanism of chiral imprinting is paramount for optimizing their utility. To elucidate the nature of the underlying chiral imprinting mechanism, we investigated how the circular dichroism (CD) intensity varies with nanoparticle size for quantum confined sizes of colloidal CsPbBr perovskite nanoparticles (NPs) capped by chiral β-methylphenethylammonium bromide ligands. We find that the CD intensity decreases strongly with increasing NP size, which, along with the shape of the CD spectra, points to electronic interactions between ligand and NP as the dominant mechanism of chiral imprinting in smaller NPs. We observe that as the NP size increases and crosses the quantum confinement threshold, the dominant mechanism of chirality transfer switches and is dominated by surfaces effects, , structural distortions. These findings provide a benchmark for quantitative models of chiral imprinting.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2nr06751jDOI Listing

Publication Analysis

Top Keywords

chiral imprinting
16
mechanism chiral
8
dominant mechanism
8
chiral
6
size-dependent chiro-optical
4
chiro-optical properties
4
properties cspbbr
4
cspbbr nanoparticles
4
nanoparticles chiral
4
chiral metal
4

Similar Publications

Hazy transparent cellulose nanocrystal-based films with tunable structural colors.

Carbohydr Polym

March 2025

State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China. Electronic address:

Cellulose nanocrystals (CNCs) are powerful biosourced nanomaterials for the construction of chiral photonic films. While various techniques have been used to enrich the optical properties of such systems, surface roughness engineering has yet to be exploited to significantly modify their optical properties. In this work, by using vacuum filtration-assisted self-assembly, CNCs are densely packed into films with high optical transparency.

View Article and Find Full Text PDF

Single-Template Molecularly Imprinted Chiral Sensor for Enantioselective Recognition of Various Chiral Amino Acids Based on a Dummy Template Strategy.

Anal Chem

January 2025

Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.

Designing single-template molecularly imprinted chiral sensors for the enantioselective recognition of various chiral amino acids (AAs) is of great importance for chiral analysis. Here, a dummy template-based chiral sensor is developed by using l-alanine (l-Ala) as the dummy template and poly(-phenylenediamine) as the imprinting layer, which can be used for the enantioselective recognition of various chiral AAs such as Ala, tryptophan (Trp), tyrosine (Tyr), cysteine (Cys), and arginine (Arg). Compared with conventional single-template molecularly imprinted chiral sensors, the designed single-template chiral sensor shows great universality for the recognition of chiral AAs since all chiral AAs possess an Ala-analogous segment.

View Article and Find Full Text PDF

Thiol-maleimide click reaction-driven imprinted polymer for chiral resolution of indoprofen.

J Chromatogr A

January 2025

Chemistry Department, Faculty of Science, Taibah University, Yanbu, Saudi Arabia; Chemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt. Electronic address:

Indoprofen (INP) comprises two enantiomers, R- and S-, whose high pharmacological efficacy is realized only in the case of the separated enantiomers. A newly synthesized poly(acrylonitrile-co-divinylbenzene) (PANB)-based sorbent with selective affinity to the S-enantiomer of INP was applied to separate INP racemate. The synthesis was performed by suspension polymerization with low-crosslinked PANB microparticles and by reaction of the inserted nitriles with 1-amino-1H-pyrrole-2,5‑dione (Ma-NH).

View Article and Find Full Text PDF

Pyrrole in a cholesteric liquid crystal was discharged using a Tesla coil to generate pyrrole radicals, affording linear-shaped nano-ordered pyrrole oligomers. Subsequently, the electrochemical polymerisation of a pre-oriented pyrrole oligomer having good affinity for liquid crystals was performed to achieve polypyrrole-imprinted asymmetry from the cholesteric liquid crystal structure. The resultant polymers were analysed using polarising optical microscopy observations, scanning electron microscopy, electrochemistry, optical spectroscopy, and electron spin resonance.

View Article and Find Full Text PDF

In this work, we theoretically explore whether a parity-violating/chiral light-matter interaction is required to capture all relevant aspects of chiral polaritonics or if a parity-conserving/achiral theory is sufficient (e.g., long-wavelength/dipole approximation).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!