Insights into how to control the activity and selectivity of the electrochemical CO reduction reaction are still limited because of insufficient knowledge of the reaction mechanism and kinetics, which is partially due to the lack of information on the interfacial pH, an important parameter for proton-coupled reactions like CO reduction. Here, we used a reliable and sensitive pH sensor combined with the rotating ring-disk electrode technique, in which a functionalized Au ring electrode works as a real-time detector of the OH generated during the CO reduction reaction at a gold disk electrode. Variations of the interfacial pH due to both electrochemical and homogeneous reactions are mapped and the correlation of the interfacial pH with these reactions is inferred. The interfacial pH near the disk electrode increases from 7 to 12 with increasing current density, with a sharp increase at around -0.5 V RHE, which indicates a change of the dominant buffering species. Through scan rate-dependent voltammetry and chronopotentiometry experiments, the homogenous reactions are shown to reach equilibrium within the time scale of the pH measurements, so that the interfacial concentrations of different carbonaceous species can be calculated using equilibrium constants. Furthermore, pH measurements were also performed under different conditions to disentangle the relationship between the interfacial pH and other electrolyte effects. The buffer effect of alkali metal cations is confirmed, showing that weakly hydrated cations lead to less pronounced pH gradients. Finally, we probe to which extent increasing mass transport and the electrolyte buffer capacity can aid in suppressing the increase of the interfacial pH, showing that the buffer capacity is the dominant factor in suppressing interfacial pH variations.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2cp05515eDOI Listing

Publication Analysis

Top Keywords

interfacial
9
rotating ring-disk
8
ring-disk electrode
8
reduction reaction
8
disk electrode
8
buffer capacity
8
electrode
5
interfacial measurements
4
reduction
4
measurements reduction
4

Similar Publications

Despite the potential to significantly enhance the economic viability of biomass-based platforms through the selective conversion of glycerol to 1,3-dihydroxyacetone (DHA), a formidable challenge persists in simultaneously achieving high catalytic activity and stability along this reaction pathway. Herein, we have devised a strategic approach to manipulate the interfacial integration within composite catalysts to address the performance trade-off. Through the modulation of the composite process involving a bio-templated porous ZSM-5 zeolite platform (bZ) and an Au/CuZnO catalyst, three distinct interfacial bonding modes were achieved: physical milling, encapsulation by zeolite, and growth on zeolite.

View Article and Find Full Text PDF

Optimizing Nanobubble Production in Ceramic Membranes: Effects of Pore Size, Surface Hydrophobicity, and Flow Conditions on Bubble Characteristics and Oxygenation.

Langmuir

January 2025

John A. Reif, Jr. Department of Civil and Environmental Engineering, New Jersey Institute of Technology, 323 Martin Luther King Blvd., Newark, New Jersey 07102, United States.

Precise control of nanobubble size is essential for optimizing the efficiency and performance of nanobubble applications across diverse fields, such as agriculture, water treatment, and medicine. Producing fine bubbles, including nanobubbles, is commonly achieved by purging gas through porous media, such as ceramic or polymer membranes. Many operational factors and membrane properties can significantly influence nanobubble production and characteristics.

View Article and Find Full Text PDF

Underwater Superoleophobic and Transparent Films with Mechanical Robustness and High Durability in Harsh Environments.

ACS Appl Mater Interfaces

January 2025

Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China.

Underwater superoleophobic and transparent (UST) films are promising in applications, such as advanced optical devices in marine environments. However, the mechanical robustness and durability in harsh environments of the existing UST films are still unsatisfactory. In this work, we present a free-standing nacre-inspired mineralized UST (NIM-UST) film with high aragonite content and excellent mechanical properties toward robust underwater superoleophobicity on two surfaces and transparency (94%) in harsh seawater environments.

View Article and Find Full Text PDF

Background/purpose: Although clinical studies have suggested a link between non-axial forces and reduced longevity of cervical restorations, the underlying mechanisms require further numerical investigation. This in-silico study employed a cohesive zone model (CZM) to investigate interfacial damage in a cervical restoration subjected to different load directions.

Materials And Methods: A plane strain model of a maxillary premolar was established, with a wedge-shaped buccal cervical restoration.

View Article and Find Full Text PDF

Boosting the oxygen reduction activity on metal surfaces by fine-tuning interfacial water with midinfrared stimulation.

Innovation (Camb)

January 2025

International Joint Laboratory of Catalytic Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China.

Heterogeneous catalysis at the metal surface generally involves the transport of molecules through the interfacial water layer to access the surface, which is a rate-determining step at the nanoscale. In this study, taking the oxygen reduction reaction on a metal electrode in aqueous solution as an example, using accurate molecular dynamic simulations, we propose a novel long-range regulation strategy in which midinfrared stimulation (MIRS) with a frequency of approximately 1,000 cm is applied to nonthermally induce the structural transition of interfacial water from an ordered to disordered state, facilitating the access of oxygen molecules to metal surfaces at room temperature and increasing the oxygen reduction activity 50-fold. Impressively, the theoretical prediction is confirmed by the experimental observation of a significant discharge voltage increase in zinc-air batteries under MIRS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!