Metabolomic and gut microbial responses of soil fauna to environmentally relevant concentrations of microplastics indicate the potential molecular toxicity of microplastics; however, limited data exist on these responses. In this study, earthworms (Eisenia fetida) were exposed to spherical (25-30 μm diameter) polystyrene microplastic-contaminated soil (0.02%, w:w) for 14 days. Changes in weight, survival rate, intestinal microbiota and metabolic responses of the earthworms were assessed. The results showed that polystyrene microplastics did not influence the weight, survival rate, or biodiversity of the gut microbiota, but significantly decreased the relative abundance of Bacteroidetes at the phylum level. Moreover, polystyrene microplastics disturbed the osmoregulatory metabolism of earthworms, as indicated by the significantly decreased betaine, myo-inositol and lactate, and increased 2-hexyl-5-ethyl-furan-3-sulfonic acid at the metabolic level. This study provides important insights into the molecular toxicity of environmentally relevant concentrations of polystyrene microplastics on soil fauna.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2023.121020DOI Listing

Publication Analysis

Top Keywords

polystyrene microplastics
12
osmoregulatory metabolism
8
soil fauna
8
environmentally relevant
8
relevant concentrations
8
molecular toxicity
8
weight survival
8
survival rate
8
microplastics
5
microplastic pollution
4

Similar Publications

Assessing the inhalation hazard of microplastics is important but necessitates sufficient quantity of microplastics that are representative and respirable (<4 µm). Common plastics are not typically manufactured in such small sizes. Here, solvent precipitation is used to produce respirable test materials from thermoplastics polyurethane (TPU), polyamide (PA-6), polyethylene terephthalate (PET), and low-density polyethylene (LDPE).

View Article and Find Full Text PDF

Nitric oxide release as a defense mechanism in marine microalgae against microplastic-induced stress.

Environ Pollut

January 2025

Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.

Nitric oxide (NO) has garnered significant attention as a critical regulatory factor and signaling molecule in plant growth. However, the effects of microplastic pollution on the release of NO by algae have not been reported. Thus, in this study, the release of NO by Skeletonema costatum and Gymnodinium sp.

View Article and Find Full Text PDF

The combination of polystyrene microplastics and di (2-ethylhexyl) phthalate promotes the conjugative transfer of antibiotic resistance genes between bacteria.

Ecotoxicol Environ Saf

January 2025

MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China. Electronic address:

Plastic pollution has become a common phenomenon. The process of plastic degradation is accompanied by the release of microplastics and plasticizers. However, the coexistence of microplastics and plasticizers on the transfer of antibiotic resistance genes (ARGs) has not been reported until now.

View Article and Find Full Text PDF

Environmental impact of microplastic emissions from wastewater treatment plant through life cycle assessment.

Sci Total Environ

January 2025

Department of Civil and Environmental Engineering, School of Digital Sciences and Engineering, Nazarbayev University, Astana 010000, Republic of Kazakhstan; Laboratory of Environmental Systems, National Laboratory Astana, Nazarbayev University, Astana 010000, Republic of Kazakhstan. Electronic address:

This study aimed to quantify the environmental impact of microplastic (MP) emissions from wastewater treatment plants (WWTPs) using life cycle assessment (LCA). The investigation comprehensively evaluated the contribution of MPs to overall WWTP midpoint and endpoint impacts, with a detailed analysis of the influence of particle size, shape, polymer type, and the environmental costs and benefits of individual wastewater treatment processes on MP removal. The LCA model was developed using SimaPro software, with impact assessments conducted via the USEtox framework and the IMPACT World+ methodology.

View Article and Find Full Text PDF

The rising concentration of microplastics (MPs) in aquatic environments poses increasing ecological risks, yet their impacts on biological communities remain largely unrevealed. This study investigated how aminopolystyrene microplastics (PS-NH) affect physiology and gene expression using the freshwater alga sp. as the test species.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!