Background: We sought to determine whether circulating modifiers of endothelial function are associated with cardiac structure and clinical outcomes in patients with heart failure with reduced ejection fraction (HFrEF).

Methods: We measured 25 proteins related to endothelial function in 99 patients from the GUIDE-IT study. Protein levels were evaluated for association with echocardiographic parameters and the incidence of all-cause death and hospitalization for heart failure (HHF).

Results: Higher concentrations of angiopoietin 2 (ANGPT2), vascular endothelial growth factor receptor 1 (VEGFR1) and hepatocyte growth factor (HGF) were significantly associated with worse function and larger ventricular volumes. Over time, decreases in ANGPT2 and, to a lesser extent, VEGFR1 and HGF, were associated with improvements in cardiac size and function. Individuals with higher concentrations of ANGPT2, VEGFR1 or HGF had increased risks for a composite of death and HHF in the following year (HR 2.76 (95% CI 1.73-4.40) per 2-fold change in ANGPT2; HR 1.76 (95% CI 1.11-2.79) for VEGFR1; and HR 4.04 (95% CI 2.19-7.44) for HGF).

Conclusions: Proteins related to endothelial function associate with cardiac size, cardiac function and clinical outcomes in patients with HFrEF. These results support the concept that endothelial function may be an important contributor to the progression to and the recovery from HFrEF.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10272021PMC
http://dx.doi.org/10.1016/j.cardfail.2022.12.011DOI Listing

Publication Analysis

Top Keywords

endothelial function
16
heart failure
12
clinical outcomes
8
outcomes patients
8
proteins endothelial
8
higher concentrations
8
growth factor
8
hgf associated
8
vegfr1 hgf
8
cardiac size
8

Similar Publications

Triple negative breast cancers often contain higher numbers of tumour-infiltrating lymphocytes compared with other breast cancer subtypes, with their number correlating with prolonged survival. Since little is known about tumour-infiltrating lymphocyte trafficking in triple negative breast cancers, we investigated the relationship between tumour-infiltrating lymphocytes and the vascular compartment to better understand the immune tumour microenvironment in this aggressive cancer type. We aimed to identify mechanisms and signaling pathways responsible for immune cell trafficking in triple negative breast cancers, specifically of basal type, that could potentially be manipulated to change such tumours from immune "cold" to "hot" thereby increasing the likelihood of successful immunotherapy in this challenging patient population.

View Article and Find Full Text PDF

A hallmark of chronic and inflammatory diseases is the formation of a fibrotic and stiff extracellular matrix (ECM), typically associated with abnormal, leaky microvascular capillaries. Mechanisms explaining how the microvasculature responds to ECM alterations remain unknown. Here, we used a microphysiological model of capillaries on a chip mimicking the characteristics of healthy or fibrotic collagen to test the hypothesis that perivascular cells mediate the response of vascular capillaries to mechanical and structural changes in the human ECM.

View Article and Find Full Text PDF

The blood-brain barrier (BBB) maintains brain homeostasis but also prevents most drugs from entering the brain. No paracellular diffusion of solutes is allowed because of tight junctions that are made impermeable by the expression of claudin5 (CLDN5) by brain endothelial cells. The possibility of regulating the BBB permeability in a transient and reversible fashion is in strong demand for the pharmacological treatment of brain diseases.

View Article and Find Full Text PDF

Background: Colorectal cancer (CRC) is one of the most common cancers worldwide. The mechanisms underlying metastasis, which contributes to poor outcomes, remain elusive.

Methods: We used the Cancer Genome Atlas dataset to compare mRNA expression patterns of integrin α6 (ITGA6) and integrin β4 (ITGB4) in patients with CRC.

View Article and Find Full Text PDF

Diabetic microvascular dysfunction is evidenced by disrupted endothelial cell junctions and increased microvascular permeability. However, effective strategies against these injuries remain scarce. In this study, the type 2 diabetes mouse model was established by high-fat diet combined with streptozotocin injection in Rnd3 endothelial- specific transgenic and knockout mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!