Effective remediation and decontamination of organophosphorus compounds using enzymes: From rational design to potential applications.

Sci Total Environ

State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Academy of Military Science, Beijing 102205, China; CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China. Electronic address:

Published: April 2023

Organophosphorus compounds (OPs) have been widely used in agriculture for decades because of their high insecticidal efficiency, which maintains and increases crop yields worldwide. More importantly, OPs, as typical chemical warfare agents, are a serious concern and significant danger for military and civilian personnel. The widespread use of OPs, superfluous and unreasonable use, has caused great harm to the environment and food chain. Developing efficient and environmentally friendly solutions for the decontamination of OPs is a long-term challenge. Microbial enzymes show potential application as natural and green biocatalysts. Thus, utilizing OP-degrading enzymes for environmental decontamination presents significant advantages, as these enzymes can rapidly hydrolyze OPs; are environmentally friendly, nonflammable, and noncorrosive; and can be discarded safely and easily. Here, the properties, structure and catalytic mechanism of various typical OP-degrading enzymes are reviewed. The methods and effects utilized to improve the expression level, catalytic performance and stability of OP-degrading enzymes were systematically summarized. In addition, the immobilization of OP-degrading enzymes was explicated emphatically, and the latest progress of cascade reactions based on immobilized enzymes was discussed. Finally, the latest applications of OP-degrading enzymes were summarized, including biosensors, nanozyme mimics and medical detoxification. This review provides guidance for the future development of OP-degrading enzymes and promotes their application in the field of environmental bioremediation and medicine.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2023.161510DOI Listing

Publication Analysis

Top Keywords

op-degrading enzymes
24
enzymes
10
organophosphorus compounds
8
environmentally friendly
8
op-degrading
6
ops
5
effective remediation
4
remediation decontamination
4
decontamination organophosphorus
4
compounds enzymes
4

Similar Publications

Mining of organophosphorous (OPs)-degrading bacterial enzymes in collections of known bacterial strains and in natural biotopes are important research fields that lead to the isolation of novel OP-degrading enzymes. Then, implementation of strategies and methods of protein engineering and nanobiotechnology allow large-scale production of enzymes, displaying improved catalytic properties for medical uses and protection of the environment. For medical applications, the enzyme formulations must be stable in the bloodstream and upon storage and not susceptible to induce iatrogenic effects.

View Article and Find Full Text PDF

Effective remediation and decontamination of organophosphorus compounds using enzymes: From rational design to potential applications.

Sci Total Environ

April 2023

State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Academy of Military Science, Beijing 102205, China; CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China. Electronic address:

Organophosphorus compounds (OPs) have been widely used in agriculture for decades because of their high insecticidal efficiency, which maintains and increases crop yields worldwide. More importantly, OPs, as typical chemical warfare agents, are a serious concern and significant danger for military and civilian personnel. The widespread use of OPs, superfluous and unreasonable use, has caused great harm to the environment and food chain.

View Article and Find Full Text PDF

Agricultural advancements focusing on increasing crop production have led to excessive usage of insecticides and pesticides, resulting in leaching and accumulation of these highly toxic chemicals in soil, water, and the food-chain. Organophosphorus (OP) compounds are the most commonly used insecticides and pesticides, which cause a wide range of long-lasting and life-threatening conditions. Due to the acute toxicity and long-term side effects of OP compounds, their timely, on-the-spot and rapid detection has gained importance, for efficient healthcare management.

View Article and Find Full Text PDF

Whole metagenome sequencing reveals links between mosquito microbiota and insecticide resistance in malaria vectors.

Sci Rep

February 2018

Entomology Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, United States Centers for Disease Control and Prevention, 1600 Clifton RD. NE. MS G-49, Atlanta, GA 30329, United States of America.

In light of the declining global malaria burden attained largely due to insecticides, a deeper understanding of the factors driving insecticide resistance is needed to mitigate its growing threat to malaria vector control programs. Following evidence of microbiota-mediated insecticide resistance in agricultural pests, we undertook a comparative study of the microbiota in mosquitoes of differing insecticide resistance status. The microbiota of wild-caught Anopheles albimanus, an important Latin American malaria vector, that were resistant (FEN_Res) or susceptible (FEN_Sus) to the organophosphate (OP) insecticide fenitrothion were characterized and compared using whole metagenome sequencing.

View Article and Find Full Text PDF

Novel bifunctional hybrid small molecule scavengers for mitigating nerve agents toxicity.

Chem Biol Interact

November 2016

Department of Pharmacology, Division of Medicinal Chemistry, Israel Institute for Biological Research, PO Box 19, Ness Ziona 74100, Israel. Electronic address:

The antidotal treatment of organophosphates (OP) nerve agents (NA) poisoning is based on anticholinergics (e.g. atropine) combined with oxime reactivators (e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!