Digital cough monitoring - A potential predictive acoustic biomarker of clinical outcomes in hospitalized COVID-19 patients.

J Biomed Inform

Centre de Recherche du Centre Hospitalier de l'Université de Montréal, 900, Saint-Denis, Montréal, Québec H2X 0A9, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, 2900, Boul Edouard-Montpetit, Montréal, Québec H3T 1J4, Canada. Electronic address:

Published: February 2023

Purpose: Recent developments in the field of artificial intelligence and acoustics have made it possible to objectively monitor cough in clinical and ambulatory settings. We hypothesized that time patterns of objectively measured cough in COVID-19 patients could predict clinical prognosis and help rapidly identify patients at high risk of intubation or death.

Methods: One hundred and twenty-three patients hospitalized with COVID-19 were enrolled at University of Florida Health Shands and the Centre Hospitalier de l'Université de Montréal. Patients' cough was continuously monitored digitally along with clinical severity of disease until hospital discharge, intubation, or death. The natural history of cough in hospitalized COVID-19 disease was described and logistic models fitted on cough time patterns were used to predict clinical outcomes.

Results: In both cohorts, higher early coughing rates were associated with more favorable clinical outcomes. The transitional cough rate, or maximum cough per hour rate predicting unfavorable outcomes, was 3·40 and the AUC for cough frequency as a predictor of unfavorable outcomes was 0·761. The initial 6 h (0·792) and 24 h (0·719) post-enrolment observation periods confirmed this association and showed similar predictive value.

Interpretation: Digital cough monitoring could be used as a prognosis biomarker to predict unfavorable clinical outcomes in COVID-19 disease. With early sampling periods showing good predictive value, this digital biomarker could be combined with clinical and paraclinical evaluation and is well adapted for triaging patients in overwhelmed or resources-limited health programs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9827741PMC
http://dx.doi.org/10.1016/j.jbi.2023.104283DOI Listing

Publication Analysis

Top Keywords

clinical outcomes
12
hospitalized covid-19
12
cough
9
digital cough
8
cough monitoring
8
clinical
8
covid-19 patients
8
time patterns
8
predict clinical
8
covid-19 disease
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!