-Selective Double Spirocyclization via Dearomatization and Isomerization under Thermodynamic Control.

J Org Chem

School of Pharmacy and Pharmaceutical Sciences and Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo 142-8501, Japan.

Published: February 2023

Spiro compounds have been considered key scaffolds for pharmaceutical applications. Although many synthetic methods exist for monospirocycles, fewer approaches are known for dispirocycles. Here, we report a highly -selective method for constructing a 5/6/5-dispirocyclic structure containing pyrrolidine and γ-lactam rings with various substituents from a series of -arylpropiolamides. The high -selectivity would result from isomerization under thermodynamic control. - and -diastereomers can be in equilibrium, favoring -adducts.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.joc.2c02225DOI Listing

Publication Analysis

Top Keywords

isomerization thermodynamic
8
thermodynamic control
8
-selective double
4
double spirocyclization
4
spirocyclization dearomatization
4
dearomatization isomerization
4
control spiro
4
spiro compounds
4
compounds considered
4
considered key
4

Similar Publications

Experimental and DFT Studies of Intermolecular Interaction-Assisted Oxindole Cyclization Reaction of Di-t-butyl 2-Aminophenyl-2-methyl Malonate.

Chem Pharm Bull (Tokyo)

January 2025

Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan.

Density functional theory calculations on the cyclization of di-t-butyl 2-(2-aminophenyl)-2-methyl malonate (1) to t-butyl 3-methyloxindole-3-carboxylate (2) reveal that acetic acid-assisted protonation of the carbonyl oxygen atom reduces the activation Gibbs free energy significantly lower than methanol-assisted pathways. Experimental data confirm that reaction concentration plays a pivotal role in oxindole formation. Experimental results also indicate distinct reaction mechanisms at low and high concentrations.

View Article and Find Full Text PDF

This work aims to determine the mechanism of the photomechanical response of poly(Methyl methacrylate) polymer doped with the photo-isomerizable dye Disperse Red 1 using the non-isomerizable dye Disperse Orange 11 as a control to isolate photoisomerization. Samples are free-standing thin films with thickness that is small compared with the optical skin depth to assure uniform illumination and photomechanical response throughout their volume, which differentiates these studies from most others. Polarization-dependent measurements of the photomechanical stress response are used to deconvolute the contributions of angular hole burning, molecular reorientation and photothermal heating.

View Article and Find Full Text PDF

The Role of Light Irradiation and Dendrimer Generation in Directing Electrostatic Self-Assembly.

Polymers (Basel)

January 2025

Department of Chemistry and Pharmacy, Interdisciplinary Center for Molecular Materials, Friedrich-Alexander Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen, Germany.

pH-responsive polyamidoamine (PAMAM) dendrimers are used as well-defined building blocks to design light-switchable nano-assemblies in solution. The complex interplay between the photoresponsive di-anionic azo dye Acid Yellow 38 (AY38) and the cationic PAMAM dendrimers of different generations is presented in this study. Electrostatic self-assembly involving secondary dipole-dipole interactions provides well-defined assemblies within a broad size range (10 nm-1 μm) with various shapes.

View Article and Find Full Text PDF

Unleashing the innate ability of Escherichia coli to produce D-Allose.

Metab Eng

January 2025

Biochemistry, Molecular, Cellular, and Developmental Graduate Group, University of California, Davis, Davis, CA, 95616, USA; Department of Chemistry, University of California, Davis, Davis, CA, 95616, USA. Electronic address:

D-allose is a rare monosaccharide, found naturally in low abundances. Due to its low-calorie profile and similar taste to sucrose, D-allose has the potential to become an ideal sugar substitute. D-allose also displays unique properties and health benefits that can be applied to various fields, including food and medicine.

View Article and Find Full Text PDF

Chirality Interplay of Peptide and Saccharide on Glycopeptide Self-Assembly.

Nano Lett

January 2025

Zhejiang Engineering Research Center for Tissue Repair Materials and Wenzhou Key Laboratory of Biomaterials and Engineering and Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China.

Saccharides and peptides with markedly disparate stereochemical features serve as pivotal chiral molecular partners in living systems. The importance of glycosylation in influencing glycopeptide self-assembly has been recognized. However, how different chiral combinations of saccharides and peptides influence the macroscopic hydrogel mechanics, fiber nanomechanics, asymmetric molecular packing, and thermodynamic changes during glycopeptide self-assembly remains unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!