Leishmaniasis is a neglected tropical disease of major public health concern. Challenges with current therapeutics have led to the exploration of plant medicine for potential antileishmanial agents. Despite the promising activity of some antileishmanial natural products, their protein targets have not been explored. The relevance of folate metabolism in the parasite's existence presents crucial targets for the development of antileishmanial chemotherapy. Pteridine reductase 1 (PTR1), a crucial enzyme involved in DNA biosynthesis, is a validated target of the parasite. Unearthing inhibitors of this enzyme is therefore an active research area. The goal of this work is to unearth small molecule inhibitors of PTR1 using molecular docking and molecular dynamic simulations. Thus, the interactions between selected antileishmanial natural products and PTR1 were examined. The binding affinities obtained from molecular docking ranged from -6.2 to -9.8 kcal/mol. When compared to the natural PTR1 substrate biopterin, compounds such as anonaine, chimanine D, corynantheine, grifolin, licochalcone A, piperogalin and xylopine produced better binding affinities, making interactions catalytic residues - Tyr194, Asp181, Phe113, Arg17 and Ser111. The PTR1- xylopine, -piperogalin, -grifolin, and -licochalcone A complexes exhibited remarkable stability under dynamic conditions during the entire 200 ns simulation period. The overall binding free energy of grifolin, piperogalin, and licochalcone A were observed to be -105.711, -103.567, and -105.646 kJ/mol respectively. The binding of these complexes was observed to be favorable and spontaneous and as such capable of inhibiting Leishmania PTR1. They could therefore be considered as candidates in the development of antileishmanial chemotherapy.Communicated by Ramaswamy H. Sarma.

Download full-text PDF

Source
http://dx.doi.org/10.1080/07391102.2023.2166119DOI Listing

Publication Analysis

Top Keywords

small molecule
8
molecule inhibitors
8
pteridine reductase
8
antileishmanial natural
8
natural products
8
development antileishmanial
8
molecular docking
8
binding affinities
8
antileishmanial
5
ptr1
5

Similar Publications

MAI-TargetFisher: A proteome-wide drug target prediction method synergetically enhanced by artificial intelligence and physical modeling.

Acta Pharmacol Sin

January 2025

Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.

Computational target identification plays a pivotal role in the drug development process. With the significant advancements of deep learning methods for protein structure prediction, the structural coverage of human proteome has increased substantially. This progress inspired the development of the first genome-wide small molecule targets scanning method.

View Article and Find Full Text PDF

Targeted protein degradation (TPD) offers a promising approach for chemical probe and drug discovery that uses small molecules or biologics to direct proteins to the cellular machinery for destruction. Among the >600 human E3 ligases, CRBN and VHL have served as workhorses for ubiquitin-proteasome system-dependent TPD. Identification of additional E3 ligases capable of supporting TPD would unlock the full potential of this mechanism for both research and pharmaceutical applications.

View Article and Find Full Text PDF

Flow chemistry-enabled asymmetric synthesis of cyproterone acetate in a chemo-biocatalytic approach.

Nat Commun

January 2025

Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai, 200433, China.

Flow chemistry has many advantages over batch synthesis of organic small-molecules in terms of environmental compatibility, safety and synthetic efficiency when scale-up is considered. Herein, we report the 10-step chemo-biocatalytic continuous flow asymmetric synthesis of cyproterone acetate (4) in which 10 transformations are combined into a telescoped flow linear sequence from commercially available 4-androstene-3, 17-dione (11). This integrated one-flow synthesis features an engineered 3-ketosteroid-Δ-dehydrogenase (ReM2)-catalyzed Δ-dehydrogenation to form the C1, C2-double bond of A ring, a substrate-controlled Co-catalyzed Mukaiyama hydration of 9 to forge the crucial chiral C17α-OH group of D ring with excellent stereoselectivity, and a rapid flow Corey-Chaykovsky cyclopropanation of 7 to build the cyclopropyl core of A ring.

View Article and Find Full Text PDF

Multi-Resonance 1,4-BN-Heteroarene for Filterless Narrowband Photodetector.

Angew Chem Int Ed Engl

January 2025

Nankai University, College of Chemistry, Weijin Road 94, 300071, Tianjin, CHINA.

As an emerging class of optoelectronic materials, multi-resonance (MR) 1,4-BN-heteroarenes have been extensively employed as narrowband electroluminescence materials, whereas their absorption feature has largely been neglected. Here we construct the first MR-molecule-based phototransistor for filterless narrowband photodetectors (NBPDs) by anchoring narrowband absorption MR molecules on the high-mobility semiconductor indium-zinc-oxide (IZO) film. The resulting device exhibits high-performance photodetection with a small full-width at half-maximum (FWHM) of 33 nm, which represents a new record for NBPDs based on intrinsic narrowband absorbing materials.

View Article and Find Full Text PDF

Aptazyme-directed A-to-I RNA editing.

Methods Enzymol

January 2025

Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Science, Chengdu, P.R. China. Electronic address:

As a promising therapeutic approach, the RNA editing process can correct pathogenic mutations and is reversible and tunable, without permanently altering the genome. RNA editing mediated by human ADAR proteins offers unique advantages, including high specificity and low immunogenicity. Compared to CRISPR-based gene editing techniques, RNA editing events are temporary, which can reduce the risk of long-term unintended side effects, making off-target edits less concerning than DNA-targeting methods.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!