Using physiology to better support wild bee conservation.

Conserv Physiol

INRAE, UR 406 Abeilles et Environnement, 84 914 Avignon, France.

Published: January 2023

There is accumulating evidence that wild bees are experiencing a decline in terms of species diversity, abundance or distribution, which leads to major concerns about the sustainability of both pollination services and intrinsic biodiversity. There is therefore an urgent need to better understand the drivers of their decline, as well as design conservation strategies. In this context, the current approach consists of linking observed occurrence and distribution data of species to environmental features. While useful, a highly complementary approach would be the use of new biological metrics that can link individual bee responses to environmental alteration with population-level responses, which could communicate the actual bee sensitivity to environmental changes and act as early warning signals of bee population decline or sustainability. We discuss here through several examples how the measurement of bee physiological traits or performance can play this role not only in better assessing the impact of anthropogenic pressures on bees, but also in guiding conservation practices with the help of the documentation of species' physiological needs. Last but not least, because physiological changes generally occur well in advance of demographic changes, we argue that physiological traits can help in predicting and anticipating future population trends, which would represent a more proactive approach to conservation. In conclusion, we believe that future efforts to combine physiological, ecological and population-level knowledge will provide meaningful contributions to wild bee conservation-based research.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9825782PMC
http://dx.doi.org/10.1093/conphys/coac076DOI Listing

Publication Analysis

Top Keywords

wild bee
8
physiological traits
8
bee
6
physiological
5
physiology better
4
better support
4
support wild
4
conservation
4
bee conservation
4
conservation accumulating
4

Similar Publications

Bumblebees, the most important wild pollinators in both agricultural and natural ecosystems, are declining worldwide. The global decline of bumblebees may threaten biodiversity, pollination services, and, ultimately, agricultural productivity. Several factors, including pesticide usage, climate change, habitat loss, and species invasion, have been documented in the decline of bumblebee species, but recent studies have revealed the dominating role of pathogens and parasites over any of these causes.

View Article and Find Full Text PDF

The four honeybee species native to Cambodia-, , , -play a vital role in ecosystem health and agricultural productivity through their pollination activities. Beekeeping in Cambodia has primarily developed around the introduced species . However, it remains underdeveloped compared to neighboring countries, with wild honey collection continuing to play a significant role.

View Article and Find Full Text PDF

Solitary wild bees play a key role as pollinators of wild plants and crops, but they are increasingly at risk from anthropogenic global change, such as climate warming. However, how warmer temperature during overwintering affects reproductive success of those bees remains largely unknown. In a semi-field experiment we assessed individual life-long reproductive success of 144 females of the solitary bee species Osmia bicornis that had been wintered at three different temperatures.

View Article and Find Full Text PDF

Introduction: The global decline in biodiversity and insect populations highlights the urgent need to conserve ecosystem functions, such as plant pollination by solitary bees. Human activities, particularly agricultural intensification, pose significant threats to these essential services. Changes in land use alter resource and nest site availability, pesticide exposure and other factors impacting the richness, diversity, and health of solitary bee species.

View Article and Find Full Text PDF

Wild solitary bees face a host of challenges from the simplification of landscapes and biodiversity loss to invasive species and urbanization. Pollinator researchers and restoration workers thus far gave much attention to increase flower cover to reduce the impact of these anthropogenic pressures. Over 30% of bee species need nonfloral resources such as leaves and resin for their survival and reproduction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!