The current World Health Organization classification integrates histological and molecular features of brain tumours. The aim of this study was to identify generalizable topological patterns with the potential to add an anatomical dimension to the classification of brain tumours. We applied non-negative matrix factorization as an unsupervised pattern discovery strategy to the fine-grained topographic tumour profiles of 936 patients with neuroepithelial tumours and brain metastases. From the anatomical features alone, this machine learning algorithm enabled the extraction of latent topological tumour patterns, termed . The optimal part-based representation was automatically determined in 10 000 split-half iterations. We further characterized each meta-topology's unique histopathologic profile and survival probability, thus linking important biological and clinical information to the underlying anatomical patterns. In neuroepithelial tumours, six meta-topologies were extracted, each detailing a transpallial pattern with distinct parenchymal and ventricular compositions. We identified one infratentorial, one allopallial, three neopallial (parieto-occipital, frontal, temporal) and one unisegmental meta-topology. Each meta-topology mapped to distinct histopathologic and molecular profiles. The unisegmental meta-topology showed the strongest anatomical-clinical link demonstrating a survival advantage in histologically identical tumours. Brain metastases separated to an infra- and supratentorial meta-topology with anatomical patterns highlighting their affinity to the cortico-subcortical boundary of arterial watershed areas.Using a novel data-driven approach, we identified generalizable topological patterns in both neuroepithelial tumours and brain metastases. Differences in the histopathologic profiles and prognosis of these anatomical tumour classes provide insights into the heterogeneity of tumour biology and might add to personalized clinical decision-making.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9830987 | PMC |
http://dx.doi.org/10.1093/braincomms/fcac336 | DOI Listing |
In Vivo
December 2024
Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan.
Background/aim: HyperArc (HA) is an automated planning technique enabling single-isocenter brain stereotactic radiotherapy (SRT); however, dosimetric outcomes may be influenced by the planner's expertise. This study aimed to assess the impact of institutional experience on the plan quality of HA-SRT for both single and multiple brain metastases.
Materials And Methods: Twenty patients who underwent HA-SRT for single metastasis between 2020 and 2021 comprised the earlier group, while those treated between 2022 and 2024 constituted the later group.
Anticancer Res
January 2025
Department of Medical Sciences, Clinical Chemistry, University of Uppsala, Uppsala, Sweden
Background/aim: Glioblastoma multiforme (GBM) is the most common and aggressive form of primary malignant tumors in the central nervous system of adults. In practice, all patients with GBM experience relapse, and treatment options become limited following first-line therapy. We previously reported a new, successful treatment approach for a GBM patient, implemented in direct conjunction with surgical intervention.
View Article and Find Full Text PDFMagn Reson Imaging
December 2024
Department of Radiology and Diagnostic Imaging, Nicolaus Copernicus University, Collegium Medicum, Bydgoszcz, Poland.
Background: Brain tumors exhibit diverse genetic landscapes and hemodynamic properties, influencing diagnosis and treatment outcomes.
Purpose: To explore the relationship between MRI perfusion metrics (rCBV, rCBF), genetic markers, and contrast enhancement patterns in gliomas, aiming to enhance diagnostic accuracy and inform personalized therapeutic strategies. Additionally, other radiological features, such as the T2/FLAIR mismatch sign, are evaluated for their predictive utility in IDH mutations.
Biochim Biophys Acta Mol Basis Dis
December 2024
Department of Biochemistry, School of Basic Science, Central University of Punjab, Bathinda 151401, India. Electronic address:
Glioblastoma (GBM) is foremost the most aggressive primary brain tumor, presenting extensive therapeutic challenges due to its high invasiveness, genetic complexity, and resistance to established treatments. Despite substantial advances in surgical and chemotherapeutic interventions, the median survival rate for patients is only 14.6 months, and the prognosis remains poor.
View Article and Find Full Text PDFJ Neurosurg Case Lessons
December 2024
Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania "Luigi Vanvitelli," Naples, Italy.
Background: Exophytic tumors of the calvaria (ETCs) remain a challenging pathology because of their complex management. The authors discuss the case of a woman with a large exophytic mass of the right frontotemporal region and underline their decision-making process on the management of this unique case and possible similar ones.
Observations: Neuroradiological findings showed a calvarial tumor with both epicranial and intracranial extension involving the frontotemporal bone with a mixed component (lytic and sclerotic) and dural infiltration with a pseudonodular pattern.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!