A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effects of black cumin-based antimalarial drug loaded with nano-emulsion of bovine and human serum albumins by spectroscopic and molecular docking studies. | LitMetric

The growing understanding of nanoemulsion biomedical applications necessitates a basic understanding of protein-drug-loaded nanoemulsion interaction. In our present study, we investigated the binding interactions of Mefloquine (MEF)-loaded black cumin seed oil (Thymoquinone) nanoemulsion of different concentrations towards human and bovine serum albumin (HSA&BSA).Fluorescenceemission,three-dimensionalspectra,UV-visible spectroscopy, and FTIR-spectroscopy, techniques were used together with molecular docking studies to identify the binding effects. The ground state complex formation between Mefloquine-loaded black cumin seed oil nanoemulsion and protein fluorophores was confirmed by a decrease in fluorescence intensity and disputed hyper-chronicity found in the UV-visible spectra of albumins. According to three-dimensional fluorescence spectral analysis, the addition of MEF in thymoquinone impacted the microenvironment around aromatic amino acid (tryptophan and tyrosine) residues in HSA. The quenching mechanism is determined to be static contact by stern-volmer analysis, resulting in the formation of a stable bioconjugate. Significant modifications in the amide FTIR frequencies at around 1600 cm correlate to variations in the secondary alpha-helical structures of biomolecules at the MEF-loaded nanoemulsion interface. Molecular dynamic studies have shown the binding affinity scores of the proteins BSA and HSA with the drug, MEF-loaded black cumin seed oil nanoemulsion. The determined thermodynamic parameters were found to agree with molecular docking data, indicating that vander-waals and hydrogen bonding forces were important in the interaction process. MEF prefers a highly polar binding site at the exterior area of domains in HSA than BSA, as shown in the molecular model, and the hydrogen bonds are highlighted. From our results, we have observed that drug delivery has a detrimental effect on protein frame confirmation by altering its physiological function.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9826829PMC
http://dx.doi.org/10.1016/j.heliyon.2022.e12677DOI Listing

Publication Analysis

Top Keywords

molecular docking
12
black cumin
12
cumin seed
12
seed oil
12
docking studies
8
mef-loaded black
8
oil nanoemulsion
8
nanoemulsion
6
molecular
5
effects black
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!