Background: Reactive oxygen species (ROS) production and oxidative stress may be responsible for the onset of several chronic diseases. Usnic acid (UA) is a natural secondary metabolite of lichens with several healthful bioactivities, including antioxidant properties. However, UA is a hydrophobic compound known for its hepatic toxicity. These aspects limit its therapeutic applications. To overcome these drawbacks and improve the pharmacological use of hydrophobic compounds, nanotechnology is widely used. Therefore, the incorporation of UA into appropriate nanocarriers could enhance the bioactivity of UA by increasing its solubility.

Objective: The aim of this work was to improve the solubility of UA and its bioactivity in the absence of cytotoxicity.

Methods: In this study, UA loaded liposomes (UA-LP) were developed. The formulations were chemically and physically characterized, and an in vitro release study was performed. Free UA and UA-LP were tested on RAW 264.7 murine macrophages in terms of cytotoxicity, intracellular ROS production, and NO release in the absence or presence of pro-oxidant LPS stimulus.

Results: UA-LP showed excellent physical and chemical stability during storage and improved solubility of UA. UA-LP showed an antioxidant effect in the absence of cytotoxicity compared with free UA on LPS-exposed macrophages.

Conclusion: For the first time, liposomal formulation improved the beneficial action of UA in terms of solubility and antioxidant activity.

Download full-text PDF

Source
http://dx.doi.org/10.2174/1567201820666230111112415DOI Listing

Publication Analysis

Top Keywords

liposomal formulation
8
usnic acid
8
raw 2647
8
ros production
8
formulation improves
4
improves bioactivity
4
bioactivity usnic
4
acid raw
4
2647 macrophage
4
macrophage cells
4

Similar Publications

Itraconazole (ITZ) is a potent antifungal agent. Its oral administration is associated with systemic toxicity, and its efficacy in ocular formulations is limited. This study aims to enhance ITZ's ocular permeation and antifungal efficacy by loading it into deformable liposomes (DLs) based on Tween 80 (T) or Poloxamer 188 (P).

View Article and Find Full Text PDF

Psoriasis, a chronic autoimmune and non-communicable skin disease, affects 2-3% of the global population, creating a significant financial burden on healthcare systems worldwide. Treatment approaches are categorized based on disease severity, with first-line therapy focusing on topical treatments and second-line therapy encompassing phototherapy, systemic therapy, and biological therapy. Transdermal drug delivery methods present a promising alternative by enhancing drug absorption through the skin, potentially improving therapeutic outcomes while minimizing systemic adverse effects.

View Article and Find Full Text PDF

Nanocurcumin in myocardial infarction therapy: emerging trends and future directions.

Front Bioeng Biotechnol

January 2025

Department of Cardiology, Yantaishan Hospital, Yantai, Shandong, China.

Myocardial infarction (MI) is the leading cause of morbidity and mortality worldwide. Curcumin has been observed to significantly reduce pathological processes associated with MI. Its clinical application is limited due to its low bioavailability, rapid degradation, and poor solubility.

View Article and Find Full Text PDF

Background: This study aims to enhance the delivery of polyphenols using nanotechnology.

Objective: To develop and evaluate liposomal formulations for improved delivery and stability of polyphenols, specifically focusing on Rutin.

Methods: Liposomal formulations were meticulously prepared via the Thin-Film Hydration method.

View Article and Find Full Text PDF

Tofacitinib in focus: Fascinating voyage from conventional formulations to novel delivery systems.

Int J Pharm

January 2025

Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, Maharashtra 400056, India. Electronic address:

Tofacitinib, a Janus kinase (JAK) inhibitor, has emerged as a primary therapeutic agent for managing autoimmune diseases such as rheumatoid arthritis, psoriatic arthritis, dermatitis and ulcerative colitis. By inhibiting the phosphorylation of JAK enzymes, tofacitinib prevents their activation within the JAK-STAT signaling pathway, which is vital for inflammatory responses. However, the tofacitinib delivery presents significant challenges, including pH-dependent solubility, poor permeability and susceptibility to oral degradation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!