In this report, we describe a modular synthesis approach towards a new series of non-centrosymmetric, dipolar 4,4'-bipyridines bearing 2,6- and 3,5-functionalized pyridyl moieties at the peripheries. Central to our strategy is the selective substitution on only one pyridyl motif that could contain electron-donating (-CH ) or electron-withdrawing (-F, -Cl, -CF ) groups which causes electronic/steric effects on one nitrogen atom in 4,4'-bipyridines. This synthetic protocol was further applied to prepare azo-functionalized (-N=N-) asymmetric bipyridines and non-centrosymmetric 4,4'-bipyridine N-oxide scaffolds, which overcome the synthetic hurdles oxidizing 4,4'-bipyridines to N-monoxides selectively at only one pyridine. Compared to the conventional symmetrical bipyridines, the dipolar non-centrosymmetric molecular tectons pave the way for the realization of non-centrosymmetric supramolecular assemblies because of the difference in the binding energy of the pyridyl nitrogen atoms.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cplu.202200425DOI Listing

Publication Analysis

Top Keywords

non-centrosymmetric dipolar
8
dipolar 44'-bipyridines
8
molecular tectons
8
synthesis non-centrosymmetric
4
44'-bipyridines
4
44'-bipyridines potential
4
potential molecular
4
tectons programmed
4
programmed assembly
4
assembly supramolecular
4

Similar Publications

In the development of new organic crystals for nonlinear optical and terahertz (THz) applications, it is very challenging to achieve the essentially required non-centrosymmetric molecular arrangement. Moreover, the resulting crystal structure is mostly unpredictable due to highly dipolar molecular components with complex functional substituents. In this work, new organic salt crystals with top-level macroscopic optical nonlinearity by controlling the van der Waals volume (V ), rather than by trial and error, are logically designed.

View Article and Find Full Text PDF

In this report, we describe a modular synthesis approach towards a new series of non-centrosymmetric, dipolar 4,4'-bipyridines bearing 2,6- and 3,5-functionalized pyridyl moieties at the peripheries. Central to our strategy is the selective substitution on only one pyridyl motif that could contain electron-donating (-CH ) or electron-withdrawing (-F, -Cl, -CF ) groups which causes electronic/steric effects on one nitrogen atom in 4,4'-bipyridines. This synthetic protocol was further applied to prepare azo-functionalized (-N=N-) asymmetric bipyridines and non-centrosymmetric 4,4'-bipyridine N-oxide scaffolds, which overcome the synthetic hurdles oxidizing 4,4'-bipyridines to N-monoxides selectively at only one pyridine.

View Article and Find Full Text PDF

Interface modes in planar one-dimensional magnonic crystals.

Sci Rep

July 2022

Institute of Spintronics and Quantum Information, Faculty of Physics, Adam Mickiewicz University, Poznań, Poland.

We present the concept of Zak phase for spin waves in planar magnonic crystals and discuss the existence condition of interface modes localized on the boundary between two magnonic crystals with centrosymmetric unit cells. Using the symmetry criterion and analyzing the logarithmic derivative of the Bloch function, we study the interface modes and demonstrate the bulk-to-edge correspondence. Our theoretical results are verified numerically and extended to the case in which one of the magnonic crystals has a non-centrosymmetric unit cells.

View Article and Find Full Text PDF

Magnetic skyrmions, vortex-like topological spin textures, have attracted much interest in a wide range of research fields from fundamental physics to spintronics applications. Recently, growing attention is also paid to antiskyrmions emerging with opposite topological charge in non-centrosymmetric magnets with D or S symmetry. In these magnets, complex interplay among anisotropic Dzyaloshinskii-Moriya interaction, uniaxial magnetic anisotropy, and magnetic dipolar interactions generates various magnetic textures.

View Article and Find Full Text PDF

Exploitation of X-ray circular polarized beams to study forbidden Bragg reflections and new information that could be obtained in these experiments are discussed. It is shown that the intensities of such reflections can be different for the right- and left-circular polarizations (i.e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!