Dexamethasone (DEX) is a potent synthetic glucocorticoid used for the treatment of variety of inflammatory and immune-mediated disorders. The RECOVERY clinical trial revealed benefits of DEX therapy in COVID-19 patients. Severe SARS-CoV-2 infection leads to an excessive inflammatory reaction commonly known as a cytokine release syndrome that is associated with activation of the toll like receptor 4 (TLR4) signaling pathway. The possible mechanism of action of DEX in the treatment of COVID-19 is related to its anti-inflammatory activity arising from inhibition of cytokine production but may be also attributed to its influence on immune cell trafficking and turnover. This study, by means of pharmacokinetic/pharmacodynamic modeling, aimed at the comprehensive quantitative assessment of DEX effects in lipopolysaccharide-challenged rats and to describe interrelations among relevant signaling molecules in this animal model of cytokine release syndrome induced by activation of TLR4 pathway. DEX was administered in a range of doses from 0.005 to 2.25 mg·kg in LPS-challenged rats. Serum DEX, corticosterone (CST), tumor necrosis factor , interleukin-6, and nitric oxide as well as lymphocyte and granulocyte counts in peripheral blood were quantified at different time points. A minimal physiologically based pharmacokinetic/pharmacodynamic (mPBPK/PD) model was proposed characterizing the time courses of plasma DEX and the investigated biomarkers. A high but not complete inhibition of production of inflammatory mediators and CST was produced in vivo by DEX. The mPBPK/PD model, upon translation to humans, may help to optimize DEX therapy in patients with diseases associated with excessive production of inflammatory mediators, such as COVID-19. SIGNIFICANCE STATEMENT: A mPBPK/PD model was developed to describe concentration-time profiles of plasma DEX, mediators of inflammation, and immune cell trafficking and turnover in LPS-challenged rats. Interrelations among DEX and relevant biomarkers were reflected in the mechanistic model structure. The mPBPK/PD model enabled quantitative assessment of in vivo potency of DEX and, upon translation to humans, may help optimize dosing regimens of DEX for the treatment of immune-related conditions associated with exaggerated immune response.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9976795PMC
http://dx.doi.org/10.1124/jpet.122.001477DOI Listing

Publication Analysis

Top Keywords

mpbpk/pd model
16
dex
13
lps-challenged rats
12
cytokine release
12
release syndrome
12
pharmacokinetic/pharmacodynamic modeling
8
model cytokine
8
dex therapy
8
dex treatment
8
immune cell
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!