Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Production of 8:2 fluorotelomer alcohol (8:2 FTOH) for industrial and consumer products, including aqueous film-forming foams (AFFFs) used for firefighting, has resulted in its widespread occurrence in the environment. However, the fate of 8:2 FTOH at AFFF-impacted sites remains largely unknown. Using AFFF-impacted soils from two United States Air Force Bases, microcosm experiments evaluated the aerobic biotransformation of 8:2 FTOH (extent and byproduct formation) and the dose-response on microbial communities due to 8:2 FTOH exposure. Despite different microbial communities, rapid transformation of 8:2 FTOH was observed during a 90-day incubation in the two soils, and 7:2 secondary fluorotelomer alcohol (7:2 sFTOH) and perfluorooctanoic acid (PFOA) were detected as major transformation products. Novel transformation products, including perfluoroalkane-like compounds (1H-perfluoroheptane, 1H-perfluorohexane, and perfluoroheptanal) were identified by liquid chromatography-high resolution mass spectrometry (LC-HRMS) and used to develop aerobic 8:2 FTOH biotransformation pathways. Microbial community analysis suggests that species from genus Sphingomonas are potential 8:2 FTOH degraders based on increased abundance in both soils after exposure, and the genus Afipia may be more tolerant to and/or involved in the transformation of 8:2 FTOH at elevated concentrations. These findings demonstrate the potential role of biological processes on PFAS fate at AFFF-impacted sites through fluorotelomer biotransformation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2022.130629 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!