PD-1/PD-L1 pathway: A double-edged sword in periodontitis.

Biomed Pharmacother

State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontics West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China. Electronic address:

Published: March 2023

Periodontitis is a disease caused by infection and immunological imbalance, which often leads to the destruction of periodontal tissue. Programmed death protein 1 (PD-1) and its ligand: programmed death ligand 1 (PD-L1) are important "immune checkpoint" proteins that have a negative regulatory effect on T cells and are targets of immunotherapy. Studies have shown that the expression of PD-1 and PD-L1 in patients with periodontitis is higher than that in healthy individuals. The keystone pathogen Porphyromonas gingivalis (P. gingivalis) is believed to be the main factor driving the upregulation of PD-1/PD-L1. High expression of PD-1/PD-L1 can inhibit the inflammatory response and reduce the destruction of periodontal supporting tissues, but conversely, it can promote the "immune escape" of P. gingivalis, thus magnifying infections. In addition, the PD-1/PD-L1 pathway is also associated with various diseases, such as cancer and Alzheimer's disease. In this review, we discuss the influence and mechanism of the PD-1/PD-L1 pathway as a "double-edged sword" affecting the occurrence and development of periodontitis, as well as its function in periodontitis-related systemic disorders. The PD-1/PD-L1 pathway could be a new avenue for periodontal and its related systemic disorders therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biopha.2023.114215DOI Listing

Publication Analysis

Top Keywords

pd-1/pd-l1 pathway
16
destruction periodontal
8
programmed death
8
systemic disorders
8
pd-1/pd-l1
6
pathway double-edged
4
double-edged sword
4
periodontitis
4
sword periodontitis
4
periodontitis periodontitis
4

Similar Publications

Esophageal squamous cell carcinoma (ESCC) is a prevalent and highly lethal malignancy in Asia. Recent advancements in immune checkpoint inhibitors (ICIs) have markedly transformed the systemic therapy landscape for ESCC. Anti-PD-1-based combination with chemotherapy or with ipilimumab, an anti-CTLA-4 antibody, have been established as the new standard first-line treatments for patients with advanced ESCC.

View Article and Find Full Text PDF

Lutetium-177 labeled iPD-L1 as a novel immunomodulator for cancer-targeted radiotherapy.

EJNMMI Radiopharm Chem

January 2025

Department of Radioactive Materials, Instituto Nacional de Investigaciones Nucleares, Ocoyoacac, 52750, Mexico.

Background: Cancer immunotherapy is a relatively new approach to cancer treatment. Peptides that target specific pathways and cells involved in immunomodulation can potentially improve the efficacy of cancer therapy. Recently, we reported iPD-L1 as a novel inhibitor peptide that specifically targets the cancer cell ligand PD-L1 (programmed death ligand 1).

View Article and Find Full Text PDF

Background: Primary pulmonary and bronchial adenoid cystic carcinoma (PACC) is a rare, low-grade malignant tumor of the lung. However, the relationship between its clinical features, surgical prognosis, and genetic phenotype has not been fully described.

Methods: PACC patient information was collected from the SEER, TCGA, and Zhongshan Hospital, Fudan University (FDZSH) databases.

View Article and Find Full Text PDF

Intravenously administered nanoparticles (NPs) often bind with plasma proteins, forming the protein corona that promotes rapid systemic clearance, a primary challenge in nanomedicine. In this study, we developed a pH- and GSH-sensitive "stealth" nanodelivery system, PTX@NPs-aPD1-IL, for sequential drug release. By using a biocompatible choline-based ionic liquid (IL) as the coating for NPs, the interaction and adsorption of NPs with serum proteins were reduced, achieving targeted delivery to the lung organ and increasing drug accumulation.

View Article and Find Full Text PDF

Bifunctional cascaded single-atom nanozymes for enhanced photodynamic immunotherapy through dual-depressing PD-L1 and regulating hypoxia.

Biomaterials

January 2025

Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin, 300072, China. Electronic address:

As a promising anti-tumor modality, photodynamic immunotherapy (PDIT) has been applied for the treatment of many solid tumors. However, tumor hypoxic condition and immunosuppressive microenvironment severely limit the treatment outcome of PDIT. Here, we have designed a hairpin tetrahedral DNA nanostructure (H-TDN)-modified bifunctional cascaded Pt single-atom nanozyme (PCFP@H-TDN) with encapsulation of the photosensitizer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!