-Methyl--aspartate receptors (NMDARs) are central for learning and information processing in the brain. Dysfunction of NMDARs can play a key role in the pathogenesis of neurodegeneration and drug addiction. The development of selective NMDAR modulators represents a promising strategy to target these diseases. Among such modulating compounds are ifenprodil and its 3-benzazepine derivatives. Classically, the effects of these NMDAR modulators have been tested by techniques like two-electrode voltage clamp (TEVC), patch clamp, or fluorescence-based assays. However, testing their functional effects in complex human systems requires more advanced approaches. Here, we established a human induced pluripotent stem cell-derived (hiPSC-derived) neural cell system and proved its eligibility as a test system for investigating NMDAR modulators and pharmaceutical effects on human neurons.

Download full-text PDF

Source
http://dx.doi.org/10.1515/hsz-2022-0216DOI Listing

Publication Analysis

Top Keywords

nmdar modulators
12
hipsc-derived neural
8
novel nmda
4
nmda receptor
4
receptor test
4
test model
4
model based
4
based hipsc-derived
4
neural cells
4
cells -methyl--aspartate
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!