A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiond30s5j6lhl31qvqfajk52anj9mdq18b3): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

Colorimetric Sensor Array for Identification of Proteins and Classification of Metabolic Profiles under Various Osmolyte Conditions. | LitMetric

Colorimetric Sensor Array for Identification of Proteins and Classification of Metabolic Profiles under Various Osmolyte Conditions.

ACS Sens

Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, 710049 Xi'an, PR China.

Published: January 2023

AI Article Synopsis

  • A new colorimetric sensor array developed for the efficient detection and identification of proteins shows promise for use in medical diagnostics and treatment.
  • This sensor works by exploiting how different osmolytes affect protein conformation and their binding to silver nanoparticles, resulting in distinct color changes for 19 different proteins.
  • Additionally, the array is capable of analyzing protein mixtures and even biological samples, suggesting its ability to classify metabolic profiles based on dietary influences in salt-sensitive rats.

Article Abstract

Rapid and efficient detection and identification of proteins hold great promise in medical diagnostics, treatment of different diseases, and proteomics. Here, we present a simple colorimetric sensor array for the differentiation of proteins in various osmolyte solutions. Osmolytes have different influences on the conformation of proteins, which have differential binding to silver nanoparticles, resulting in color changes. The sensor array shows unique color change patterns for each of the 19 proteins, allowing unambiguous identification. Very interestingly, the differentiation of 19 proteins is related to their molecular weight. Moreover, the sensor array can be used to identify protein mixtures, thermal denaturized proteins, and unknown protein samples. Finally, the sensor array can also analyze the plasma or liver samples of the four groups of salt-sensitive rats fed with different diets, indicating that it has the potential for the classification of metabolic profiles.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acssensors.2c01847DOI Listing

Publication Analysis

Top Keywords

sensor array
20
colorimetric sensor
8
identification proteins
8
classification metabolic
8
metabolic profiles
8
differentiation proteins
8
proteins
7
array
5
array identification
4
proteins classification
4

Similar Publications

Objectives: Cochlear implant array malpositioning is associated with impaired speech perception, vertigo, and facial nerve stimulation. Tip fold-over is a subset of malpositioning that occurs more often with perimodiolar electrodes, but historically it has not been characterized due to lack of knowledge regarding electrode movements of the electrode within the cochlea. The aim of this study was to characterize the mechanics of tip fold-over events and their associated insertion pressure profiles.

View Article and Find Full Text PDF

Objective: Electroencephalography (EEG) and Magnetoencephalography (MEG) are widely used non-invasive techniques in clinical and cognitive neuroscience. However, low spatial resolution measurements, partial brain coverage by some sensor arrays, as well as noisy sensors could result in distorted sensor topographies resulting in inaccurate reconstructions of underlying brain dynamics. Solving these problems has been a challenging task, This paper proposes a robust framework based on electromagnetic source imaging for interpolation of unknown or poor quality EEG/MEG measurements.

View Article and Find Full Text PDF

Nanogold is an emerging material for enhancing surface-enhanced Raman scattering (SERS), which enables the detection of hazardous analytes at trace levels. This study presents a simple, single-step plasma synthesis method to control the size and yield of Au nanoparticles by using plasma-liquid redox chemistry. The pin-based argon plasma reduces the Au precursor in under 5 min, synthesizing Au spherical particles ranging from ∼20 nm at 0.

View Article and Find Full Text PDF

A wavelength demodulation method for ultra-short fiber Bragg grating (US-FBG) sensors based on an arrayed waveguide grating (AWG) and a convex optimization algorithm is proposed and demonstrated. Instead of measuring the output power ratio of the two adjacent AWG channels as previously done, in this work the wavelength demodulation is realized by reconstructing the US-FBG spectrum. The principle of spectral reconstruction involves using an AWG to sample the spectral information of US-FBG and constructing underdetermined matrix equations with the obtained prior information on transmission responses and the detected output power from multiple AWG channels.

View Article and Find Full Text PDF

Wearable nanocomposite stretch sensors are an exciting new development in biomaterials for biomechanical motion-tracking technology, with applications in the treatment of low back pain, knee rehabilitation, fetal movement tracking, and other fields. When strained, the resistance of the low-cost sensors is reduced, enabling human motion to be monitored using a suitable sensor array. However, current sensor technologies have exhibited significant drift, in the form of increased electrical resistance, if left stored in typical room conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!