We developed a series of transmembrane conjugated oligoelectrolytes (COEs) with tunable optical emissions from the UV to the near IR to address the false-positive problem when detecting nanometer-sized extracellular vesicles (EVs) by flow cytometry. The amphiphilic molecular framework of COEs is defined by a linear conjugated structure and cationic charged groups at each terminal site. Consequently, COEs have excellent water solubility and the absence of nanoaggregates at concentrations up to 50 μM, and unbound COE dyes can be readily removed through ultrafiltration. These properties enable unambiguous and simple detection of COE-labeled small EVs using flow cytometry with negligible background signals. We also demonstrated the time-lapsed tracking of small EV uptake into mammalian cells and the endogenous small EV labeling using COEs. Briefly, COEs provide a class of membrane-targeting dyes that behave as biomimetics of the lipid bilayer and a general and practical labeling strategy for nanosized EVs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9833659PMC
http://dx.doi.org/10.1126/sciadv.ade2996DOI Listing

Publication Analysis

Top Keywords

conjugated oligoelectrolytes
8
evs flow
8
flow cytometry
8
coes
5
water-soluble extracellular
4
extracellular vesicle
4
vesicle probes
4
probes based
4
based conjugated
4
oligoelectrolytes developed
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!