Mechanical properties of soft biological tissues play a critical role in physiology and disease, affecting cell behavior and fate decisions and contributing to tissue development, maintenance, and repair. Limitations of existing tools prevent a comprehensive characterization of soft tissue biomechanics, hindering our understanding of these fundamental processes. Here, we develop an instrument for high-fidelity uniaxial tensile testing of soft biological tissues in controlled environmental conditions, which is based on the closed-loop interaction between an electromagnetic actuator and an optical strain sensor. We first validate the instrument using synthetic elastomers characterized via conventional methods; then, we leverage the proposed device to investigate the mechanical properties of murine esophageal tissue and, individually, of each of its constitutive layers, namely, the epithelial, connective, and muscle tissues. The enhanced reliability of this instrument makes it an ideal platform for future wide-ranging studies of the mechanics of soft biological tissues.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9833656 | PMC |
http://dx.doi.org/10.1126/sciadv.ade2522 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104.
Dorsal closure is a process that occurs during embryogenesis of . During dorsal closure, the amnioserosa (AS), a one-cell thick epithelial tissue that fills the dorsal opening, shrinks as the lateral epidermis sheets converge and eventually merge. During this process, both shape index and aspect ratio of amnioserosa cells increase markedly.
View Article and Find Full Text PDFSoft Robot
January 2025
State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, China.
The high degree of freedom (DoF) shape morphing widely exists in biology for mimicry, camouflage, and locomotion. Currently, a lot of bionic soft/flexible actuators and robots with shape-morphing functions have been developed to realize conformity, grasp, and movement. Among these solutions, two-dimensional responsive materials and structures that can shape morph into different three-dimensional configurations are valuable for creating reversible high DoF shape morphing.
View Article and Find Full Text PDFRegen Biomater
December 2024
Department of Endodontics, Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin 300070, PR China.
Periodontitis, a widespread inflammatory disease, is the major cause of tooth loss in adults. While mechanical periodontal therapy benefits the periodontal disease treatment, adjunctive periodontal therapy is also necessary. Topically applied anti-inflammatory agents have gained considerable attention in periodontitis therapy.
View Article and Find Full Text PDFJ Oral Biol Craniofac Res
December 2024
Department of Orthodontics, University of Washington, Seattle, USA.
Objective: To evaluate the pharyngeal airway dimensions and regional pharyngeal adipose distribution in the young adult minipig model.
Materials And Methods: Eight 7-8-months-old Yucatan minipigs, half male and female, were sedated and placed prone to scan the pharyngeal region. Magnetic resonance imaging (MRI) was performed using dynamic turbo-field echo (TFE)-sequence with respiratory gating and adipose-weighted sequence.
Mater Today Bio
February 2025
Institute of Chemistry and Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel.
This study explores the utilization of digital light processing (DLP) printing to fabricate complex structures using native gelatin as the sole structural component for applications in biological implants. Unlike approaches relying on synthetic materials or chemically modified biopolymers, this research harnesses the inherent properties of gelatin to create biocompatible structures. The printing process is based on a crosslinking mechanism using a di-tyrosine formation initiated by visible light irradiation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!