Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3100
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: The rising prevalence of cystic renal lesions (CRLs) detected by computed tomography necessitates better identification of the malignant cystic renal neoplasms since a significant majority of CRLs are benign renal cysts. Using arterial phase CT scans combined with pathology diagnosis results, a fusion feature-based blending ensemble machine learning model was created to identify malignant renal neoplasms from cystic renal lesions (CRLs). Histopathology results were adopted as diagnosis standard. Pretrained 3D-ResNet50 network was selected for non-handcrafted features extraction and pyradiomics toolbox was selected for handcrafted features extraction. Tenfold cross validated least absolute shrinkage and selection operator regression methods were selected to identify the most discriminative candidate features in the development cohort. Feature's reproducibility was evaluated by intra-class correlation coefficients and inter-class correlation coefficients. Pearson correlation coefficients for normal distribution and Spearman's rank correlation coefficients for non-normal distribution were utilized to remove redundant features. After that, a blending ensemble machine learning model were developed in training cohort. Area under the receiver operator characteristic curve (AUC), accuracy score (ACC), and decision curve analysis (DCA) were employed to evaluate the performance of the final model in testing cohort.
Results: The fusion feature-based machine learning algorithm demonstrated excellent diagnostic performance in external validation dataset (AUC = 0.934, ACC = 0.905). Net benefits presented by DCA are higher than Bosniak-2019 version classification for stratifying patients with CRL to the appropriate surgery procedure.
Conclusions: Fusion feature-based classifier accurately distinguished malignant and benign CRLs which outperformed the Bosniak-2019 version classification and illustrated improved clinical decision-making utility.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9834471 | PMC |
http://dx.doi.org/10.1186/s13244-022-01349-7 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!