In the 20th century, the discovery of antibiotics played an essential role in the fight against infectious diseases, including meningitis, typhoid fever, pneumonia and Mycobacterium tuberculosis. The development of multidrug resistance in microflora due to improper antibiotic use created significant public health issues. Antibiotic resistance has increased at an alarming rate in the past few decades. Multidrug-resistant bacteria (superbugs) such as methicillin-resistant Staphylococcus aureus (MRSA) as well as drug-resistant tuberculosis pose serious health implications. Despite the continuous increase in resistant microbes, the discovery of novel antibiotics is constrained by the cost and complexities of discovery of drugs. The nanotechnology has given new hope in combating this problem. In the present review, recent developments in therapeutics utilizing nanotechnology for novel antimicrobial drug development are discussed. The nanoparticles of silver, gold and zinc oxide have proved to be efficient antimicrobial agents against multidrug-resistant Klebsiella, Pseudomonas, Escherichia Coli and MRSA. Using nanostructures as carriers for antimicrobial agents provides better bioavailability, less chances of sub-therapeutic drug accumulation and less drug-related toxicity. Nanophotothermal therapy using fullerene and antibody functionalized nanostructures are other strategies that can prove to be helpful.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00203-023-03404-3DOI Listing

Publication Analysis

Top Keywords

multidrug-resistant bacteria
8
antimicrobial agents
8
nanotechnology contemporary
4
contemporary therapeutic
4
therapeutic approach
4
approach combating
4
combating infections
4
infections multidrug-resistant
4
bacteria 20th
4
20th century
4

Similar Publications

A Comprehensive Review on Exploring the Potential of Phytochemicals and Biogenic Nanoparticles for the Treatment of Antimicrobial-Resistant Pathogenic Bacteria.

Curr Microbiol

January 2025

Molecular Biology Laboratory, Department of Microbiology, Science Campus, Alagappa University, Karaikudi, Tamil Nadu, 630003, India.

Antimicrobial resistance (AMR) is an escalating global health concern that results in approximately 700,000 deaths annually owing to drug-resistant infections. It compromises the effectiveness of conventional antibiotics, as well as fundamental medical procedures, such as surgery and cancer treatment. Phytochemicals, natural plant constituents, and biogenic nanoparticles synthesized through biological processes are pharmacological alternatives for supplementing or replacing traditional antibiotics.

View Article and Find Full Text PDF

The widespread use of antibiotics has led to the emergence of multidrug-resistant bacteria, which pose significant threats to animal health and food safety. Host defense peptides (HDPs) have emerged as promising alternatives because of their unique antimicrobial properties and minimal resistance induction. However, the high costs associated with HDP production and incorporation into animal management practices hinder their widespread application.

View Article and Find Full Text PDF

Multifunctional Mycobacterial Topoisomerases with Distinctive Features.

ACS Infect Dis

January 2025

Department of Microbiology and Cell Biology, Indian Institute of Science, C.V. Raman Avenue, Bangalore 560012, India.

Tuberculosis (TB) continues to be a major cause of death worldwide despite having an effective combinatorial therapeutic regimen and vaccine. Being one of the most successful human pathogens, retains the ability to adapt to diverse intracellular and extracellular environments encountered by it during infection, persistence, and transmission. Designing and developing new therapeutic strategies to counter the emergence of multidrug-resistant and extensively drug-resistant TB remains a major task.

View Article and Find Full Text PDF

Objective: To determine the frequency of multidrug-resistant (MDR) bacterial isolates in respiratory specimens obtained from ventilated patients admitted to critical care units at the National Institute of Cardiovascular Diseases (NICVD), along with COVID-19-positive cases.

Study Design: An observational study. Place and Duration of the Study: National Institute of Cardiovascular Diseases, between November 2021 and March 2022.

View Article and Find Full Text PDF

Background: Early and accurate diagnosis of drug resistance, including resistance to second-line anti-tuberculosis (TB) drugs, is crucial for the effective control and management of pre-extensively drug-resistant TB (pre-XDR-TB) and extensively drug-resistant TB (XDR-TB). The Xpert MTB/XDR assay is the WHO recommended method for detecting resistance to isoniazid and second-line anti-TB drugs when rifampicin resistance is detected. Currently, the Xpert MTB/XDR assay is not yet implemented in Ethiopia, thus the MTBDRsl assay continues to be used.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!