The objective of this article is to automatically segment organs at risk (OARs) for thoracic radiology in computed tomography (CT) scan images. The OARs in the thoracic anatomical region during the radiotherapy treatment are mainly the neighbouring organs such as the esophagus, heart, trachea, and aorta. The dataset of 40 patients was used in the proposed work by splitting it into three parts: training, validation, and test sets. The implementation was performed on the Google Colab Pro+ framework with 52 GB of RAM and 265 GB of storage space. An ensemble model was evolved for the automatic segmentation of four OARs in thoracic CT images. U-Net with InceptionV3 as the backbone was used, and different hyperparameters were used during the training of the model. The proposed model achieved precise accuracy for OARs segmentation with an average dice coefficient of 0.9413, Hausdorff value of 0.1838, sensitivity of 0.9783, and specificity of 0.9895 on the Test dataset. An ensembled U-Net InceptionV3 model has been proposed, improving the segmentation results compared with the state-of-the-art techniques such as U-Net, ResNet, Vgg16, etc. The results of the experiments revealed that the proposed model effectively improved the performance of the segmentation of the esophagus, heart, trachea, and aorta.

Download full-text PDF

Source
http://dx.doi.org/10.1089/cmb.2022.0248DOI Listing

Publication Analysis

Top Keywords

u-net inceptionv3
12
oars thoracic
12
automatic segmentation
8
computed tomography
8
ensembled u-net
8
inceptionv3 model
8
esophagus heart
8
heart trachea
8
trachea aorta
8
model proposed
8

Similar Publications

Clinical limitations due to poverty significantly impact the lives and health of many individuals globally. Nevertheless, this challenge can be addressed with modern technologies, particularly through robotics and artificial intelligence. This study aims to address these challenges using advanced technologies in robotic surgery and artificial intelligence, proposing a method to fully automate endometriosis robotic surgery with a focus on interpretability, accuracy, and reliability.

View Article and Find Full Text PDF

[A survey on the application of convolutional neural networks in the diagnosis of occupational pneumoconiosis].

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi

April 2024

Department of Radiology, West China Fourth Hospital, Sichuan University, Chengdu 610041, P. R. China.

Pneumoconiosis ranks first among the newly-emerged occupational diseases reported annually in China, and imaging diagnosis is still one of the main clinical diagnostic methods. However, manual reading of films requires high level of doctors, and it is difficult to discriminate the staged diagnosis of pneumoconiosis imaging, and due to the influence of uneven distribution of medical resources and other factors, it is easy to lead to misdiagnosis and omission of diagnosis in primary healthcare institutions. Computer-aided diagnosis system can realize rapid screening of pneumoconiosis in order to assist clinicians in identification and diagnosis, and improve diagnostic efficacy.

View Article and Find Full Text PDF

Pluripotent stem cells can be differentiated into all three germ-layers including ecto-, endo-, and mesoderm in vitro. However, the early identification and rapid characterization of each germ-layer in response to chemical and physical induction of differentiation is limited. This is a long-standing issue for rapid and high-throughput screening to determine lineage specification efficiency.

View Article and Find Full Text PDF

This study aims at suggesting an end-to-end algorithm based on a U-net-optimized generative adversarial network to predict anterior neck lower jaw angles (ANLJA), which are employed to define fetal head posture (FHP) during nuchal translucency (NT) measurement. We prospectively collected 720 FHP images (half hyperextension and half normal posture) and regarded manual measurement as the gold standard. Seventy percent of the FHP images (half hyperextension and half normal posture) were used to fit models, and the rest to evaluate them in the hyperextension group, normal posture group (NPG), and total group.

View Article and Find Full Text PDF

Deep learning-based concrete defects classification and detection using semantic segmentation.

Struct Health Monit

January 2024

Department of Civil and Environmental Engineering, United Arab Emirates University, Al Ain, Abu Dhabi, UAE.

Visual damage detection of infrastructure using deep learning (DL)-based computational approaches can facilitate a potential solution to reduce subjectivity yet increase the accuracy of the damage diagnoses and accessibility in a structural health monitoring (SHM) system. However, despite remarkable advances with DL-based SHM, the most significant challenges to achieving the real-time implication are the limited available defects image databases and the selection of DL networks depth. To address these challenges, this research has created a diverse dataset with concrete crack (4087) and spalling (1100) images and used it for damage condition assessment by applying convolutional neural network (CNN) algorithms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!