Background: Proton radiography (PR) uses highly energetic proton beams to create images where energy loss is the main contrast mechanism. Water-equivalent path length (WEPL) measurements using flat panel PR (FP-PR) have potential for in vivo range verification. However, an accurate WEPL measurement via FP-PR requires irradiation with multiple energy layers, imposing high imaging doses.

Purpose: A FP-PR method is proposed for accurate WEPL determination based on a patient-specific imaging field with a reduced number of energies (n) to minimize imaging dose.

Methods: Patient-specific FP-PRs were simulated and measured for a head and neck (HN) phantom. An energy selection algorithm estimated spot-wise the lowest energy required to cross the anatomy (Emin) using a water-equivalent thickness map. Starting from Emin, n was restricted to certain values (n = 26, 24, 22, …, 2 for simulations, n = 10 for measurements), resulting in patient-specific FP-PRs. A reference FP-PR with a complete set of energies was compared against patient-specific FP-PRs covering the whole anatomy via mean absolute WEPL differences (MAD), to evaluate the impact of the developed algorithm. WEPL accuracy of patient-specific FP-PRs was assessed using mean relative WEPL errors (MRE) with respect to measured multi-layer ionization chamber PRs (MLIC-PR) in the base of skull, brain, and neck regions.

Results: MADs ranged from 2.1 mm (n = 26) to 21.0 mm (n = 2) for simulated FP-PRs, and 7.2 mm for measured FP-PRs (n = 10). WEPL differences below 1 mm were observed across the whole anatomy, except at the phantom surfaces. Measured patient-specific FP-PRs showed good agreement against MLIC-PRs, with MREs of 1.3 ± 2.0%, -0.1 ± 1.0%, and -0.1 ± 0.4% in the three regions of the phantom.

Conclusion: A method to obtain accurate WEPL measurements using FP-PR with a reduced number of energies selected for the individual patient anatomy was established in silico and validated experimentally. Patient-specific FP-PRs could provide means of in vivo range verification.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mp.16208DOI Listing

Publication Analysis

Top Keywords

patient-specific fp-prs
24
accurate wepl
16
wepl
9
flat panel
8
proton radiography
8
imaging field
8
wepl measurements
8
vivo range
8
range verification
8
reduced number
8

Similar Publications

Background: Proton radiography (PR) uses highly energetic proton beams to create images where energy loss is the main contrast mechanism. Water-equivalent path length (WEPL) measurements using flat panel PR (FP-PR) have potential for in vivo range verification. However, an accurate WEPL measurement via FP-PR requires irradiation with multiple energy layers, imposing high imaging doses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!