Inversion Symmetry and Exotic Interlayer Exciton Behavior in Twisted Trilayer MoS Produced by Vapor Deposition.

ACS Appl Mater Interfaces

Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, Laboratory for Quantum Engineering and Micro-Nano Energy Technology, and School of Physics and Optoelectronics, Xiangtan University, Hunan411105, People's Republic of China.

Published: January 2023

Two-dimensional materials (2DMs) that are stacked vertically with a certain twist angle provide new degrees of freedom for designing novel physical properties. Twist-related properties of homogeneous bilayer and heterogeneous bilayer 2DMs, such as excitons and phonons, have been described in many pioneering works. However, twist-related properties of homogeneous trilayer 2DMs have been rarely reported. In this work, trilayer MoS with the twisted angle of 12° by optimized vapor deposition rather than the conventional mechanical stacking method was successfully fabricated. The inversion symmetry of trilayer MoS is changed by twist. Phonons and excitons produced by twist have an enormous influence on the interlayer interaction of trilayer MoS, making trilayer MoS appear to have exotic optical properties. Compared with monolayer MoS, the phonon vibration and photoluminescence intensity of trilayer MoS with one-interlayer-twisted are significantly improved, and the second harmonic generation response in the non-twist region of trilayer MoS is ∼3 times that of monolayer MoS. In addition, interlayer coupling, inversion symmetry, and exciton behavior of the twist region show regional differences. This work provides a new way for designing twist and exploring the influence of twist on the structures of 2DMs with few layers.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.2c18687DOI Listing

Publication Analysis

Top Keywords

trilayer mos
28
inversion symmetry
12
mos
9
exciton behavior
8
trilayer
8
vapor deposition
8
twist-related properties
8
properties homogeneous
8
monolayer mos
8
twist
6

Similar Publications

Thickness-dependence of the in-plane thermal conductivity and the interfacial thermal conductance of supported MoS2.

J Phys Condens Matter

January 2025

Dep. Fisica, Universidade Federal de Minas Gerais, ICEX, Av. Antonio Carlos 6627, Belo Horizonte, MG, 31270-901, BRAZIL.

Nowadays, experimental research advances in condensed matter physics are deep-rooted in the development and manipulation of nanomaterials, making it essential to explore the fundamental properties of materials that are candidates for nanotechnology. In this work, we study the dependence of the molybdenum disulfide (MoS2) Raman modes on the sample temperature and on the excitation laser power. From the correlation between these two sets of measurements, we determine the planar thermal conductivity of MoSmonolayers, bilayers, trilayers, four layers, seven layers, and eight layers.

View Article and Find Full Text PDF

Electrically Switching Ferroelectric Order in 3R-MoS Layers.

Nano Lett

January 2025

Department of Physics and Astronomy, University of California Riverside, Riverside, California 92521, United States.

Transition metal dichalcogenides (TMDs) with rhombohedral (3R) stacking order are excellent platforms to realize multiferroelectricity. In this work, we demonstrate the electrical switching of ferroelectric orders in bilayer, trilayer, and tetralayer 3R-MoS dual-gate devices by examining their reflection and photoluminescence (PL) responses under sweeping out-of-plane electric fields. We observe sharp shifts in excitonic spectra at different critical fields with pronounced hysteresis.

View Article and Find Full Text PDF

Thickness-dependence of the in-plane thermal conductivity and the interfacial thermal conductance of supported MoS2.

J Phys Condens Matter

January 2025

Dep. Fisica, Universidade Federal de Minas Gerais, ICEX, Av. Antonio Carlos 6627, Belo Horizonte, MG, 31270-901, BRAZIL.

Nowadays, experimental research advances in condensed matter physics are deep-rooted in the development and manipulation of nanomaterials, making it essential to explore the fundamental properties of materials that are candidates for nanotechnology. In this work, we study the dependence of the molybdenum disulfide (MoS2) Raman modes on the sample temperature and on the excitation laser power. From the correlation between these two sets of measurements, we determine the planar thermal conductivity of MoSmonolayers, bilayers, trilayers, four layers, seven layers, and eight layers.

View Article and Find Full Text PDF

Two-Dimensional transition metal dichalcogenides have been the subject of extensive attention thanks to their unique properties and atomically thin structure. Because of its unprecedented room-temperature magnetic properties, iron-doped MoS (Fe:MoS) is considered the next-generation quantum and magnetic material. It is essential to understand Fe:MoS's thermal behavior since temperature and thermal load/activation are crucial for their magnetic properties and the current nano and quantum devices have been severely limited by thermal management.

View Article and Find Full Text PDF

Layer-number-dependent photoswitchability in 2D MoS-diarylethene hybrids.

Nanoscale

December 2024

School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, USA.

Molybdenum disulfide (MoS) is a notable two-dimensional (2D) transition metal dichalcogenide (TMD) with properties ideal for nanoelectronic and optoelectronic applications. With growing interest in the material, it is critical to understand its layer-number-dependent properties and develop strategies for controlling them. Here, we demonstrate a photo-modulation of MoS flakes and elucidate layer-number-dependent charge transfer behaviors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!