Patterns of beta diversity of plankton communities in rivers have been mainly determined by hydrological factors that alter the dispersion and composition of species and traits. Rotifers in the Guamá River (eastern Amazonian River) were sampled (monthly between October 2017 and June 2019) to analyze the temporal variation of taxonomic and functional beta diversity and its partitions (turnover and nestedness) as well as the effects of temporal, environmental, and seasonal dissimilarities. Taxonomic turnover and functional nestedness over time were observed as well as functional homogenization, which was arguably due to the hypereutrophic condition of the river. There were no seasonal differences in taxonomic and functional beta diversity probably due the low environmental dissimilarity. This study demonstrated that this Guamá River stretch presented low environmental dissimilarity and hypereutrophic waters, which benefited the establishment of a community of species with high taxonomic turnover over time, but with low functional dissimilarity and loss of some functions related to the functional traits evaluated in the ecosystem. It is important to point out that temporal studies should evaluate both taxonomic and functional aspects of communities, mainly because the effect of environmental changes may be more noticeable at the functional level of communities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1590/0001-3765202220201894 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Division of Basic Science, Fred Hutchinson Cancer Center, Seattle, WA 98109.
Mx proteins, first identified in mammals, encode potent antiviral activity against a wide range of viruses. Mx proteins arose within the Dynamin superfamily of proteins (DSP), which mediate critical cellular processes, such as endocytosis and mitochondrial, plastid, and peroxisomal dynamics. Despite their crucial role, the evolutionary origins of Mx proteins are poorly understood.
View Article and Find Full Text PDFEcology
January 2025
Department of Ecology, University of Innsbruck, Innsbruck, Austria.
The trait-based partitioning of species plays a critical role in biodiversity-ecosystem function relationships. This niche partitioning drives and depends on community structure, yet this link remains elusive in the context of a metacommunity, where local community assembly is dictated by regional dispersal alongside local environmental conditions. Hence, elucidating the coupling of niche partitioning and community structure needs spatially explicit studies.
View Article and Find Full Text PDFBiotechnol Biofuels Bioprod
January 2025
Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, Shandong, China.
Coastal wetlands are rich in terrestrial organic carbon. Recent studies suggest that microbial consortia play a role in lignin degradation in coastal wetlands, where lignin turnover rates are likely underestimated. However, the metabolic potentials of these consortia remain elusive.
View Article and Find Full Text PDFSci Adv
January 2025
Phycology Research Group, Department of Biology, Ghent University, Ghent, Belgium.
The green seaweed relies on associated bacteria for morphogenesis and is an important model to study algal-bacterial interactions. -associated bacteria exhibit high turnover across environmental gradients, leading to the hypothesis that bacteria contribute to the acclimation potential of the host. However, the functional variation of these bacteria in relation to environmental changes remains unclear.
View Article and Find Full Text PDFPlant Divers
November 2024
College of Urban and Environmental Sciences, MOE Key Laboratory of Earth Surface Processes, Peking University, Beijing 100871, China.
Grasslands account for about a quarter of the Earth's land area and are one of the major terrestrial ecosystems, with significant ecological and economic values. The influence of environmental factors and management types on grassland biodiversity has garnered considerable attention. This study investigated how patterns of species richness are influenced by geographical distance, environmental gradients, and management type in the moist mountain grasslands of northeastern Yunnan, China.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!