Promoting Effect of Common Marine Cations on Hydrate Dissociation and Structural Evolution under a Static Electric Field.

J Phys Chem B

Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian116024, China.

Published: January 2023

Natural gas hydrate, a potential energy resource, is attracting worldwide attention. In this study, we propose a new method of hydrate dissociation which uses seawater and electrostatic fields (SE method) cooperatively. The hydrate molecular dissociation mechanism of gas hydrate is a key issue in studying the kinetic properties of gas hydrate using the SE method. Therefore, molecular dynamics simulations were used to investigate the thermodynamic properties and structural changes of methane hydrate (MH) in multiple kinds of salt solutions under an electrostatic field. The results show that the electric field can drive cations into the MH phase to form a series of random semiopen cages, which are essentially temporary and metastable. The variation in free energy indicates that it is more difficult for divalent cations to enter the hydrate phase than monovalent cations, meaning that the hydrate structures formed with divalent cations are more unstable. Then, the ion current occurred in the hydrate phase (called ion migration in this study), which greatly accelerated hydrate dissociation. In contrast, the promotion effect of cations with the same charge on MH dissociation is as follows: Sr > K ≈ Na > Ca ≈ Mg. In general, the presence of common marine cations enhanced the promotion effect of the electric field on gas hydrate dissociation.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpcb.2c05382DOI Listing

Publication Analysis

Top Keywords

hydrate dissociation
16
gas hydrate
16
hydrate
12
electric field
12
common marine
8
marine cations
8
divalent cations
8
hydrate phase
8
cations
7
dissociation
6

Similar Publications

The development of mechanically robust super-lubrication hydrogel materials with sustained lubricity at high contact pressures is challenging. In this work, inspired by the durable lubricity feature of the earthworm epidermis, a multilevel structural super-lubrication hydrogel (MS-SLH) system, the so-called lubricant self-pumping hydrogel, is developed. The MS-SLH system is manufactured by chemically dissociating a double network hydrogel to generate robust and wrinkled lubrication layer, and then laser etching was used to generate cylindrical texture pores as gland-like pockets for storing lubricants.

View Article and Find Full Text PDF

Evaluation of rheological properties of guar gum-based fracturing fluids enhanced with hydroxyl group bearing thermodynamic hydrate inhibitors.

Int J Biol Macromol

December 2024

Department of Petroleum Engineering, School of Energy Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat 382426, India. Electronic address:

Naturally occurring gas clathrates are a significant methane resource-the primary component of natural gas, regarded as the cleanest hydrocarbon and a key feedstock for producing gray and blue hydrogen. Despite the global abundance of gas hydrate reserves, extraction via depressurization has yet to achieve commercially viable production rates. The primary limitation lies in the low permeability of hydrate-bearing sediments, where solid clathrates obstruct porous pathways, hindering dissociation and slowing gas recovery.

View Article and Find Full Text PDF

The electrochemical nitrate reduction reaction (NORR) involves multiple hydrogenation and deoxygenation steps, which compete with the hydrogen evolution reaction (HER). Therefore, NORR driven in acidic media is challenging in spite of advantageous fast hydrogen transfers in its elementary steps. The findings presented in this article first demonstrate that the NORR is significantly activated even in acidic lithium nitrate solutions at LiNO concentrations exceeding 6 m on a Pt electrode (the highly effective catalyst for HER) by the formation of a "hydronium-in-salt" electrolyte (HISE), a new type of aqueous high concentration salt electrolyte.

View Article and Find Full Text PDF

Understanding the protein conformation transition within polymer hydrogels using a near-infrared water spectroscopy probe.

Int J Biol Macromol

December 2024

Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Tianjin 300071, PR China. Electronic address:

For understanding the behavior of the active substance in vivo, the near-infrared (NIR) spectral variations of ovalbumin (OVA) loaded in poly(N, N-dimethyl acrylamide) (PDMAA) hydrogel with temperature were investigated. Analyzing the spectra with improved resolution by continuous wavelet transform (CWT), the absorption variation of the peak at 4851 cm arising from the α-helix of OVA with temperature was studied. The results show that a sharp decrease occurs at a lower temperature in PDMAA hydrogel, indicating that the unfolding of OVA in PDMAA hydrogel is facilitated.

View Article and Find Full Text PDF

This experimental study reports the thermodynamic influence of three different amino acids on methane hydrate in oil-dominated systems, namely, glycine, proline, and alanine. To thoroughly examine the effect of selected amino acids on methane (CH) hydrate formation compared to the commercial inhibitor monoethylene glycol (MEG) in the presence of oil, the hydrate liquid-vapor equilibrium (H-Lw-Lo-V) curve is used to measure amino acid aqueous solutions. All experiments are performed at a concentration of 10 wt % by using the isochoric T-cycle technique in a high-pressure reactor cell at the selected range of pressures with temperatures of 4.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!