A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Thermo-Responsive Poly(-isopropylacrylamide)/Hydroxypropylmethyl Cellulose Hydrogel with High Luminous Transmittance and Solar Modulation for Smart Windows. | LitMetric

Thermochromic smart windows are considered to be promising energy-saving devices for reducing energy consumption in buildings. The ideal materials for thermochromic smart windows should have high transmittance, high solar modulation, low phase-transition temperature, and excellent high-temperature thermal stability, which are difficult to achieve simultaneously. This work reports a simple one-step low-temperature polymerization method to prepare a thermo-responsive poly(-isopropylacrylamide)/hydroxypropylmethyl cellulose (PNIPAM/HPMC) hydrogel achieving the above performances simultaneously. The low-temperature polymerization environment endowed the hydrogel with a high luminous transmittance () of 90.82%. HPMC as a functional material effectively enhanced the mechanical properties and thermal stability of the hydrogel. Meanwhile, the PNIPAM/HPMC hydrogel showed a low phase-transition temperature (∼32 °C) and high solar modulation (Δ = 81.52%), which proved that it is an ideal material for thermochromic smart windows. Moreover, a PNIPAM/HPMC smart window exhibited high light transmittance ( = 86.27%), excellent light modulation (Δ = 74.27%, Δ = 86.17%, and Δ = 63.93%), good indoor temperature regulation ability and stability, which indicated that it was an attractive candidate for application in reducing energy consumption in buildings. This work also provides an option and direction for modifying PNIPAM-based thermochromic smart windows.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.2c15367DOI Listing

Publication Analysis

Top Keywords

smart windows
20
thermochromic smart
16
solar modulation
12
thermo-responsive poly-isopropylacrylamide/hydroxypropylmethyl
8
poly-isopropylacrylamide/hydroxypropylmethyl cellulose
8
hydrogel high
8
high luminous
8
luminous transmittance
8
reducing energy
8
energy consumption
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!