A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Single-cell gene regulatory network prediction by explainable AI. | LitMetric

The molecular heterogeneity of cancer cells contributes to the often partial response to targeted therapies and relapse of disease due to the escape of resistant cell populations. While single-cell sequencing has started to improve our understanding of this heterogeneity, it offers a mostly descriptive view on cellular types and states. To obtain more functional insights, we propose scGeneRAI, an explainable deep learning approach that uses layer-wise relevance propagation (LRP) to infer gene regulatory networks from static single-cell RNA sequencing data for individual cells. We benchmark our method with synthetic data and apply it to single-cell RNA sequencing data of a cohort of human lung cancers. From the predicted single-cell networks our approach reveals characteristic network patterns for tumor cells and normal epithelial cells and identifies subnetworks that are observed only in (subgroups of) tumor cells of certain patients. While current state-of-the-art methods are limited by their ability to only predict average networks for cell populations, our approach facilitates the reconstruction of networks down to the level of single cells which can be utilized to characterize the heterogeneity of gene regulation within and across tumors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9976884PMC
http://dx.doi.org/10.1093/nar/gkac1212DOI Listing

Publication Analysis

Top Keywords

gene regulatory
8
cell populations
8
single-cell rna
8
rna sequencing
8
sequencing data
8
tumor cells
8
cells
6
single-cell
5
single-cell gene
4
regulatory network
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!