The Hi-C method has revolutionized the study of genome organization, yet interpretation of Hi-C interaction frequency maps remains a major challenge. Genomic compartments are a checkered Hi-C interaction pattern suggested to represent the partitioning of the genome into two self-interacting states associated with active and inactive chromatin. Based on a few elementary mechanistic assumptions, we derive a generative probabilistic model of genomic compartments, called deGeco. Testing our model, we find it can explain observed Hi-C interaction maps in a highly robust manner, allowing accurate inference of interaction probability maps from extremely sparse data without any training of parameters. Taking advantage of the interpretability of the model parameters, we then test hypotheses regarding the nature of genomic compartments. We find clear evidence of multiple states, and that these states self-interact with different affinities. We also find that the interaction rules of chromatin states differ considerably within and between chromosomes. Inspecting the molecular underpinnings of a four-state model, we show that a simple classifier can use histone marks to predict the underlying states with 87% accuracy. Finally, we observe instances of mixed-state loci and analyze these loci in single-cell Hi-C maps, finding that mixing of states occurs mainly at the cell level.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9943678 | PMC |
http://dx.doi.org/10.1093/nar/gkac1258 | DOI Listing |
J Clin Invest
January 2025
Department of Medicine, University of California San Francisco, San Francisco, United States of America.
Hypoxia is a major cause of pulmonary hypertension (PH) worldwide, and it is likely that interstitial pulmonary macrophages contribute to this vascular pathology. We observed in hypoxia-exposed mice an increase in resident interstitial macrophages, which expanded through proliferation and expressed the monocyte recruitment ligand CCL2. We also observed an increase in CCR2+ macrophages through recruitment, which express the protein thrombospondin-1 that functionally activates TGF-beta to cause vascular disease.
View Article and Find Full Text PDFBiol Psychiatry Glob Open Sci
March 2025
Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin.
Magnetic resonance imaging (MRI) is a powerful tool to identify the structural and functional correlates of neurological illness but provides limited insight into molecular neurobiology. Using rat genetic models of autism spectrum disorder, we show that image texture-processed neurite orientation dispersion and density imaging (NODDI) diffusion MRI possesses an intrinsic relationship with gene expression that corresponds to the biophysically modeled cellular compartments of the NODDI diffusion signal. Specifically, we demonstrate that neurite density index and orientation dispersion index signals are correlated with intracellular and extracellular gene expression, respectively.
View Article and Find Full Text PDFCell Prolif
January 2025
Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China.
Herpesviruses rely on host RNA polymerae II (RNA Pol II) for their mRNA transcription, yet the mechanisms of which has been poorly defined, while certain herpesviruses can enhance viral gene transcription by altering the RNA Pol II location, modulating its phosphorylation, or directly interacting with RNA Pol II. However, the influence of herpesviruses on RNA Pol II transcription extends beyond these direct effects. Here, we present a novel mechanism by which the host cell cycle regulates viral gene transcription via RNA Pol II during infection by Anatid Herpesvirus 1 (AnHV-1), an avian alpha-herpesvirus.
View Article and Find Full Text PDFPhysiol Rep
February 2025
Quebec Heart and Lung Institute - Laval University, Quebec, Quebec, Canada.
Metabolic dysfunction-associated steatotic liver disease (MASLD) describes liver diseases caused by the accumulation of triglycerides in hepatocytes (steatosis) as well as the resulting inflammation and fibrosis. Previous studies have demonstrated that accumulation of fat in visceral adipose tissue compartments and the liver is associated with alterations in the circulating levels of some amino acids, notably glutamate. This study aimed to investigate the associations between circulating amino acids, particularly glutamate, and MASLD.
View Article and Find Full Text PDFJ Extracell Vesicles
January 2025
Vascular Biology Program, Boston Children's Hospital, Boston, Massachusetts, USA.
Extracellular vesicles (EVs) from brain-seeking breast cancer cells (Br-EVs) breach the blood-brain barrier (BBB) via transcytosis and promote brain metastasis. Here, we defined the mechanisms by which Br-EVs modulate brain endothelial cell (BEC) dynamics to facilitate their BBB transcytosis. BEC treated with Br-EVs show significant downregulation of Rab11fip2, known to promote vesicle recycling to the plasma membrane and significant upregulation of Rab11fip3 and Rab11fip5, which support structural stability of the endosomal compartment and facilitate vesicle recycling and transcytosis, respectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!