Fruits are vital parts of the human diet because they include necessary nutrients that the body needs. Pesticide use has increased dramatically in recent years to combat fruit pests across the world. Pesticide usage during production, on the other hand, frequently results in undesirable residues in fruits after harvest. Consumers are concerned about pesticide residues since most of the fruits are directly consumed and even recommended for the patients as dietary supplements. As a result of this worry, pesticide residues in fruits are being randomly monitored to re-assess the food safety situation and make informed legislative decisions. To assess the degree of pesticide residues in fruits, a simple and quick analytical procedure is usually required. As a result, pesticide residue detection (using various analytical techniques: GC, LC and Biosensors) becomes critical, and regulatory directives are formed to regulate their amounts via the Maximum Residue Limit (MRL). Over the previous two decades, a variety of extraction techniques and analytical methodologies for xenobiotic's efficient extraction, identification, confirmation and quantification have been developed, ranging from traditional to advanced. The goal of this review is to give readers an overview of the evolution of numerous extraction and detection methods for pesticide residue analysis in fruits. The objective is to assist analysts in better understanding how the ever-changing regulatory landscape might drive the need for new analytical methodologies to be developed in order to comply with current standards and safeguard consumers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jchromb.2022.123587 | DOI Listing |
Int J Hyg Environ Health
January 2025
Center for Gender-Specific Medicine, Istituto Superiore di Sanità, 00161, Rome, Italy. Electronic address:
The extensive use of pesticides in agriculture significantly enhances crop yields and pest control. However, it also raises concerns regarding environmental and human health impacts. Children are particularly vulnerable to health effects of pesticide exposure, especially for neurological development and reproductive health.
View Article and Find Full Text PDFMycobiology
December 2024
Department of Chemistry, College of Natural Sciences, Salale University, Fiche, Ethiopia.
Food insecurity and malnutrition are among the major problems in most developing nations recently. Mushroom cultivation is one of the promising strategies to overcome these challenges. The growth and productivity of mushrooms differ because of their wide range of cultivation substrates.
View Article and Find Full Text PDFFood Chem
January 2025
College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China. Electronic address:
The accurate detection of carbamate pesticides popularly employed in agricultural products is critical for reducing the threat of resultant residues to human health. In this work, a regenerable nanofilm used for SERS substrate was constructed by interfacially confined self-assembly incorporating CdS nanowires (CdSNWs) and Ag nanoparticles (AgNPs). The constructed AgNPs-CdSNWs/Nanofilm could significantly enhance the Raman signals of three carbamate pesticides (metolcarb, carbaryl and aldicarb-sulfone).
View Article and Find Full Text PDFNanoscale
January 2025
Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, 16424 Depok, West Java, Indonesia.
This study reports on the development of a highly sensitive non-enzymatic electrochemical sensor based on a two-dimensional TiCT/MWCNT-OH nanocomposite for the detection of paraoxon-based pesticide. The synergistic effect between the TiCT nanosheet and the functionalized multi-walled carbon nanotubes enhanced the sensor's conductivity and catalytic activity. The nanocomposite demonstrates superior electrochemical and electroanalytical performance compared to the pristine TiCT and MWCNT-OH in detecting paraoxon-ethyl in fruit samples (green and red grapes), with a linear response range from 0.
View Article and Find Full Text PDFThe conclusions of the European Food Safety Authority (EFSA) following the peer review of the initial risk assessments carried out by the competent authorities of the rapporteur Member State, the Netherlands, and co-rapporteur Member State, France, for the pesticide active substance spinosad and the assessment of applications for maximum residue levels (MRLs) are reported. The context of the peer review was that required by Commission Implementing Regulation (EU) No 844/2012. The conclusions were reached on the basis of the evaluation of the representative uses of spinosad as insecticide on bulb/dry onions, maize (fodder and grain), sweet corn, grapes (table and wine), lettuce, potato, aubergine, pepper and tomato.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!