Advanced radio-frequency pulse design used in magnetic resonance imaging has recently been demonstrated with deep learning of (convolutional) neural networks and reinforcement learning. For two-dimensionally selective radio-frequency pulses, the (convolutional) neural network pulse prediction time (a few milliseconds) was in comparison more than three orders of magnitude faster than the conventional optimal control computation. The network pulses were from the supervised training capable of compensating scan-subject dependent inhomogeneities of B and B fields. Unfortunately, the network presented with a small percentage of pulse amplitude overshoots in the test subset, despite the optimal control pulses used in training were fully constrained. Here, we have extended the convolutional neural network with a custom-made clipping layer that completely eliminates the risk of pulse amplitude overshoots, while preserving the ability to compensate for the inhomogeneous field conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.artmed.2022.102460 | DOI Listing |
J Occup Environ Hyg
January 2025
Center for Environmental Solutions and Emergency Response, United States Environmental Protection Agency, Cincinnati, Ohio.
Chemical release data are essential for performing chemical risk assessments to understand the potential exposures arising from industrial processes. Often, these data are unknown or unavailable and must be estimated. A case study of volatile organic compound releases during extrusion-based additive manufacturing is used here to explore the viability of various regression methods for predicting chemical releases to inform chemical assessments.
View Article and Find Full Text PDFIntegr Environ Assess Manag
January 2025
División de Estudios de Posgrado e Investigación, Tecnológico Nacional de México/IT de Culiacán, Culiacán, Sinaloa, México.
Eutrophication is one of the most relevant concerns due to the risk to water supply and food security. Nitrogen and phosphorus chemical species concentrations determined the risk and magnitude of eutrophication. These analyses are even more relevant in basins with intensive agriculture due to agrochemical discharges.
View Article and Find Full Text PDFAnn N Y Acad Sci
January 2025
Hainan Institute, Zhejiang University, Sanya, China.
In this paper, we introduce FUSION-ANN, a novel artificial neural network (ANN) designed for acoustic emission (AE) signal classification. FUSION-ANN comprises four distinct ANN branches, each housing an independent multilayer perceptron. We extract denoised features of speech recognition such as linear predictive coding, Mel-frequency cepstral coefficient, and gammatone cepstral coefficient to represent AE signals.
View Article and Find Full Text PDFJ Chem Theory Comput
January 2025
Technische Universitát Berlin, Institut für Chemie, Theoretische Chemie/Quantenchemie, Sekr. C7, Straße des 17. Juni 135, Berlin D-10623, Germany.
Local hybrid functionals (LHs) use a real-space position-dependent admixture of exact exchange (EXX), governed by a local mixing function (LMF). The systematic construction of LMFs has been hampered over the years by a lack of exact physical constraints on their valence behavior. Here, we exploit a data-driven approach and train a new type of "n-LMF" as a relatively shallow neural network.
View Article and Find Full Text PDFPLoS Comput Biol
January 2025
Electrical and Computer Engineering Department, Concordia University, Montreal, Canada.
Astrocytes critically shape whole-brain structure and function by forming extensive gap junctional networks that intimately and actively interact with neurons. Despite their importance, existing computational models of whole-brain activity ignore the roles of astrocytes while primarily focusing on neurons. Addressing this oversight, we introduce a biophysical neural mass network model, designed to capture the dynamic interplay between astrocytes and neurons via glutamatergic and GABAergic transmission pathways.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!