In this work, we report the development of a new type of highly active and stable Bi-based electrode material, i.e., BiCu metal-organic frames (MOF) derived carbon film (CF) encapsulating BiCu alloy nanoparticles (BiCu-ANPs) for electrochemical sensing. The integration of Bi with Cu to form BiCu-ANPs can improve their electrocatalytic activity as well as the acid resistance. Meanwhile, the carbon film that encapsulates BiCu-ANPs not only guarantees the BiCu-ANPs with high electrical conductivity and fast electrochemical kinetics but also effectively alleviates the volume change during the adsorption and desorption of heavy metal (HM) ions. Therefore, the as-obtained CF encapsulating BiCu-ANPs (BiCu-ANPs@CF) exhibits fully exposed active sites, facile charge transfer, high stability and conductivity, which gives rise to enhanced sensitivity and stability for the electrochemical detection of HM ions. When integrated into a potable electrochemical sensing system for simultaneous detection of Pb, Cd and Zn, the BiCu-ANPs@CF modified electrode exhibits low detection limit (i.e., 0.081 ppb for Pb, 0.95 ppb for Cd, 35 ppb for Zn), wide detection range (i.e., 0.5-700 ppb for Pb, 5-900 ppb for Cd, 150-600 ppb for Zn) and good anti-interference. Finally, the system has been used for on-site detection of multiplexed HM ions in human biological liquids and environmental water with a good spiked recovery rate, which demanstrates its promise application in the future for on-site monitoring of human health and pollutants in water quality.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aca.2022.340730 | DOI Listing |
Pharmaceutics
December 2024
Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovića Alasa 12-14, 11001 Belgrade, Serbia.
Pathogen bacteria appear and survive on various surfaces made of steel or glass. The existence of these bacteria in different forms causes significant problems in healthcare facilities and society. Therefore, the surface engineering of highly potent antimicrobial coatings is highly important in the 21st century, a period that began with a series of epidemics.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Meat Technology & Science of Protein-Rich Foods (MTSP), Department of Microbial and Molecular Systems, Leuven Food Science and Nutrition Research Centre, KU Leuven Campus Ghent, B-9000 Ghent, Belgium.
The valorization of potato peel side streams for food packaging applications, especially for the substitution of current petrochemical-based oxygen barrier solutions such as EVOH, is becoming increasingly important. Therefore, potato peel-based films and coatings (on PLA) were developed containing 10-50% (/ potato peel) citric acid (CA). To determine the impact of CA concentration on the structure and physicochemical properties of cast films and coatings, ATR-FTIR spectroscopy, moisture adsorption isotherms, tensile properties, light transmittance, oxygen permeability, carbon dioxide transmission rate, and water vapor transmission rate measurements were performed.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou 571199, China.
Currently, polymer actuators capable of photothermal response are being developed to be more sensitive and repeatable. In this work, a three-layered structured soft film actuator (NA/PET/NI-3) was designed by combining poly(N-isopropylacrylamide) (PNIPAM), poly(N-(2-aminoethyl)-acrylamide) (PANGA) and poly(ethylene glycol-co-terephthalate) (PET) film. Coconut water and PEI were used to synthesize a new kind of carbon nanosheet (PEI-CCS), which, when triggered by near-infrared light, will enable photothermal bending behavior in the micrometer-scale NA/PET/NI-n film, while PET served as the supporting and heat conducting layer.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1, 119991 Moscow, Russia.
The scope of this work was to develop a thin-film composite (TFC) membrane for the separation of CO/CO mixtures, which are relevant for many processes of gas processing and gasification of carbon-based feedstock. Special attention was given to the development of highly permeable porous polysulfone (PSF) supports (more than 26,000 GPU for CO) since both the selective and support layers contribute significantly to the overall performance of the TFC membrane. The PSF porous support is widely used in commercial and lab-scale TFC membranes, and its porous structure and other exploitation parameters are set during the non-solvent-induced phase separation (NIPS) process.
View Article and Find Full Text PDFMicromachines (Basel)
December 2024
School of Mechanical Engineering, Sichuan University, Chengdu 610065, China.
This study addresses the challenge of multi-dimensional and small gas sensor data classification using a gelatin-carbon black (CB-GE) composite film sensor, achieving 91.7% accuracy in differentiating gas types (ethanol, acetone, and air). Key techniques include Principal Component Analysis (PCA) for dimensionality reduction, the Synthetic Minority Over-sampling Technique (SMOTE) for data augmentation, and the Support Vector Machine (SVM) and K-Nearest Neighbor (KNN) algorithms for classification.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!