Background: s: To overcome the limitation of polymerase chain reaction (PCR), isothermal amplification methods such as thermophilic helicase-dependent amplification (tHDA) have been developed. However, formation of primer dimer due to the single amplification temperature are major problems of tHDA. When cross-dimerization of forward and reverse primer occurred, false-positive results can be found on the lateral flow assay (LFA) which is one of the major detection methods widely used as a point of care diagnosis. Therefore, specific method of detecting only the target amplicon is required.
Results: In this study, a tHDA-based CRISPR/Cas12a system was developed to detect low levels of Escherichia coli O157:H7 in fresh salad mix without the false-positive results produced by primer dimers. For the comparison of the effect in eliminating false-positive results by CRISPR/Cas12a system, LFA was also evaluated. The tHDA-based CRISPR/Cas12a system detected as low as 10 CFU/mL E. coli O157:H7 in bacterial pure culture. In LFA false-positive results were produced due to the primer dimer, whereas the primer dimer produced by tHDA was not detected in the CRISPR/Cas12a system. These results indicated that the CRISPR/Cas12a system eliminated the formation of primer dimer. In fresh salad mix, the tHDA-based CRISPR/Cas12a system combined with the filter concentration method detected 10 CFU/g E. coli O157:H7.
Conclusion: This study was the first to amplify stx2 of E. coli O157:H7 with tHDA as an isothermal amplification method and detected the amplicon without false-positive results by combining tHDA with CRISPR/Cas12a. Therefore, this study showed great potential for detecting low levels of E. coli O157:H7 present in fresh salad mix.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aca.2022.340679 | DOI Listing |
Methods Mol Biol
December 2024
Department of Microbiology and Plant Pathology, University of California, Riverside, CA, USA.
Molecular genetic tools such as CRISPR-Cas gene editing systems are invaluable for understanding gene and protein function and revealing the details of a pathogen's life and disease cycles. Here we present protocols for genome editing in Phytophthora infestans, an oomycete with global importance as a pathogen of potato and tomato. Using a vector system that expresses variants of Cas12a from Lachnospiraceae bacterium and its guide RNA from a unified transcript, we first present a method for editing genes through the non-homologous end-joining (NHEJ) pathway.
View Article and Find Full Text PDFBiosensors (Basel)
December 2024
Precision Medicine and Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua Shenzhen International Graduate School, Tsinghua University, University Town of Shenzhen, Nanshan District, Shenzhen 518055, China.
Background: Nasopharyngeal carcinoma (NPC) is a malignant tumor with high prevalence in southern China. Aberrant DNA methylation, as a hallmark of cancer, is extensively present in NPC, the detection of which facilitates early diagnosis and prognostic improvement of NPC. Conventional methylation detection methods relying on bisulfite conversion have limitations such as time-consuming, complex processes and sample degradation; thus, a more rapid and efficient method is needed.
View Article and Find Full Text PDFBiotechnol Lett
December 2024
Key Laboratory of Environmental Chemistry and Ecotoxicology of Organic Pollutants of Chongqing, Ecological and Environment Monitoring Center of Chongqing, 252 Qishan Road, Chongqing, 401132, China.
Rapid diagnostic tools for Porphyromonas gingivalis (Pg), the primary microorganism responsible for the development of periodontitis, particularly those designed for chair-side applications, could provide substantial health benefits to patients. To address this issue, we developed a CRISPR/Cas12a-based rapid Pg detection method. Dual-gRNA and hairpin reporter strategies were employed to enhance CRISPR/Cas12a reaction efficiency.
View Article and Find Full Text PDFClin Chim Acta
December 2024
Center of Excellence in Systems Microbiology (CESM), Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Rama IV, Bangkok 10330, Thailand. Electronic address:
Mycobacterium species cause several vital human diseases, including tuberculosis and non-tuberculous mycobacterial infections which are treated with different drug regimens Therefore, accurate and rapid diagnosis is essential for effective treatment and controlling the spread of these pathogens. This study aims to develop the isothermal method combining RPA and CRISPR-Cas12a techniques, named as MyTRACK, to detect and differentiate major clinical mycobacteria at the species level. The assay has no cross-reactivity with limit of detection of 1 to 100 copies/reaction for various targeted mycobacteria.
View Article and Find Full Text PDFTalanta
December 2024
Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, 400044, PR China; Chongqing Key Laboratory of Bio-perception & Intelligent Information Processing, School of Microelectronics and Communication Engineering, Chongqing University, Chongqing, 400044, PR China. Electronic address:
High sensitivity and specificity in microRNA detection are of great significance for early cancer screening. This study employed a pre-assembled bulb-shaped G-quadruplex signal unit (G4MB) as a novel and efficient label-free probe. The products amplified by the miRNA-155-targeted exponential amplification reaction (EXPAR) activated the trans-cleavage activity of CRISPR/Cas12a, disrupting the G4MB structure to achieve dual-channel fluorescence/colorimetric (FL/CM) inverse signal output.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!