The AP2/ERF family is an important class of transcription factors involved in plant growth and various biological processes. One of the AP2/ERF transcription factors, RAP2.6L, participates in various stresses responses. However, the function of RAP2.6L is largely unknown in apples (Malus domestica). In this study, an apple gene homologous to Arabidopsis AtRAP2.6L, MdERF113, was analyzed by bioinformatic characterization, gene expression analysis and subcellular localization assessment. MdERF113 was highly expressed in the sarcocarp and was responsive to hormonal signals and abiotic stresses. MdERF113-overexpression apple calli were less sensitive to low temperature, drought, salinity, and abscisic acid than wild-type. Subcellular localization revealed that MdERF113 was a nuclear-localized transcription factor, and yeast experiments confirmed that MdERF113 has no autonomous activation activity. Overall, this study indicated that MdERF113 plays a role in regulating plant growth under abiotic conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/ppl.13853 | DOI Listing |
PLoS One
December 2024
School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
Immunofluorescence is highly dependent on antibody-antigen interactions for accurate visualization of proteins and other biomolecules within cells. However, obtaining antibodies with high specificity and affinity for their target proteins can be challenging, especially for targets that are complex or naturally present at low levels. Therefore, we developed AptaFluorescence, a protocol that utilizes fluorescently labeled aptamers for in vitro biomolecule visualization.
View Article and Find Full Text PDFPLoS One
December 2024
Hangzhou Institute of Medicine (HIM), Zhejiang Cancer Hospital, Zhejiang, Hangzhou, China.
Purpose: Approximately 20% of all breast cancer cases are classified as triple-negative breast cancer (TNBC), which represents the most challenging subtype due to its poor prognosis and high metastatic rate. Caffeic acid phenethyl ester (CAPE), the main component extracted from propolis, has been reported to exhibit anticancer activity across various tumor cell types. This study aimed to investigate the effects and mechanisms of CAPE on TNBC.
View Article and Find Full Text PDFMethods Mol Biol
December 2024
Department of Microbiology and Plant Pathology, University of California, Riverside, CA, USA.
Transcriptional regulation allows cells to execute developmental programs, maintain homeostasis, and respond to intra- and extracellular signals. Central to these processes are promoters, which in eukaryotes are sequences upstream of genes that bind transcription factors (TFs) and which recruit RNA polymerase to initiate mRNA synthesis. Valuable tools for studying promoters include reporter genes, which can be used to indicate when and where genes are activated.
View Article and Find Full Text PDFCell Biol Toxicol
December 2024
Department of Urology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, 100700, P.R. China.
The intraprostatic inflammatory infiltrate is characterized by Th1 CD4 T cells, and its molecular mechanism is not well defined. This study explored the mechanisms responsible for the alteration of Th1/Th17 differentiation of CD4 T cells in chronic non-bacterial prostatitis (CNP). CNP rats were induced by the administration of testosterone and 17β-estradiol.
View Article and Find Full Text PDFCell Biochem Biophys
December 2024
Biology Department, Université de Moncton, Moncton, NB, Canada.
Targeting more than one in nine men before age 70, prostate cancer is the most common type of cancer in men. The increased levels of cyclins, leading to activation of cyclin-dependent kinases (CDKs), play a critical role in the increased proliferation of prostate cancer cells. In this study, the regulation of the cyclin D1 (CCND1) promoter activity by activator protein-1 (AP-1) and SRY-related HMG-box (SOX) transcription factors has been characterized in PC3 prostate cancer cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!