Exsolution is a recent advancement for fabricating oxide-supported metal nanoparticle catalysts via phase precipitation out of a host oxide. A fundamental understanding and control of the exsolution kinetics are needed to engineer exsolved nanoparticles to obtain higher catalytic activity toward clean energy and fuel conversion. Since oxygen release via oxygen vacancy formation in the host oxide is behind oxide reduction and metal exsolution, we hypothesize that the kinetics of metal exsolution should depend on the kinetics of oxygen release, in addition to the kinetics of metal cation diffusion. Here, we probe the surface exsolution kinetics both experimentally and theoretically using thin-film perovskite SrTiFeO (STF) as a model system. We quantitatively demonstrated that in this system the surface oxygen release governs the metal nanoparticle exsolution kinetics. As a result, by increasing the oxygen release rate in STF, either by reducing the sample thickness or by increasing the surface reactivity, one can effectively accelerate the Fe exsolution kinetics. Fast oxygen release kinetics in STF not only shortened the prereduction time prior to the exsolution onset, but also increased the total quantity of exsolved Fe over time, which agrees well with the predictions from our analytical kinetic modeling. The consistency between the results obtained from in situ experiments and analytical modeling provides a predictive capability for tailoring exsolution, and highlights the importance of engineering host oxide surface oxygen release kinetics in designing exsolved nanocatalysts.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.2c10256DOI Listing

Publication Analysis

Top Keywords

oxygen release
28
exsolution kinetics
16
surface oxygen
12
release kinetics
12
host oxide
12
kinetics
10
exsolution
10
oxygen
8
nanoparticle exsolution
8
metal nanoparticle
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!