Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: 7-Methylxanthine, a derivative of caffeine noted for its lack of toxicity and ability to treat and even prevent myopia progression, is a high-value biochemical with limited natural availability. Attempts to produce 7-methylxanthine through purely chemical methods of synthesis are faced with complicated chemical processes and/or the requirement of a variety of hazardous chemicals, resulting in low yields and racemic mixtures of products. In recent years, we have developed engineered microbial cells to produce several methylxanthines, including 3-methylxanthine, theobromine, and paraxanthine. The purpose of this study is to establish a more efficient biosynthetic process for the production of 7-methylxanthine from caffeine.
Results: Here, we describe the use of a mixed-culture system composed of Escherichia coli strains engineered as caffeine and theobromine "specialist" cells. Optimal reaction conditions for the maximal conversion of caffeine to 7-methylxanthine were determined to be equal concentrations of caffeine and theobromine specialist cells at an optical density (600 nm) of 50 reacted with 2.5 mM caffeine for 5 h. When scaled-up to 560 mL, the simple biocatalytic reaction produced 183.81 mg 7-methylxanthine from 238.38 mg caffeine under ambient conditions, an 85.6% molar conversion. Following HPLC purification and solvent evaporation, 153.3 mg of dried 7-methylxanthine powder was collected, resulting in an 83.4% product recovery.
Conclusion: We present the first report of a biocatalytic process designed specifically for the production and purification of the high-value biochemical 7-methylxanthine from caffeine using a mixed culture of E. coli strains. This process constitutes the most efficient method for the production of 7-methylxanthine from caffeine to date.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9830774 | PMC |
http://dx.doi.org/10.1186/s13036-022-00316-6 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!