Background: COVID-19 caused by the SARS-CoV-2 infection may result in various disease symptoms and severity, ranging from asymptomatic, through mildly symptomatic, up to very severe and even fatal cases. Although environmental, clinical, and social factors play important roles in both susceptibility to the SARS-CoV-2 infection and progress of COVID-19 disease, it is becoming evident that both pathogen and host genetic factors are important too. In this study, we report findings from whole-exome sequencing (WES) of 27 individuals who died due to COVID-19, especially focusing on frequencies of DNA variants in genes previously associated with the SARS-CoV-2 infection and the severity of COVID-19.
Results: We selected the risk DNA variants/alleles or target genes using four different approaches: 1) aggregated GWAS results from the GWAS Catalog; 2) selected publications from PubMed; 3) the aggregated results of the Host Genetics Initiative database; and 4) a commercial DNA variant annotation/interpretation tool providing its own knowledgebase. We divided these variants/genes into those reported to influence the susceptibility to the SARS-CoV-2 infection and those influencing the severity of COVID-19. Based on the above, we compared the frequencies of alleles found in the fatal COVID-19 cases to the frequencies identified in two population control datasets (non-Finnish European population from the gnomAD database and genomic frequencies specific for the Slovak population from our own database). When compared to both control population datasets, our analyses indicated a trend of higher frequencies of severe COVID-19 associated risk alleles among fatal COVID-19 cases. This trend reached statistical significance specifically when using the HGI-derived variant list. We also analysed other approaches to WES data evaluation, demonstrating its utility as well as limitations.
Conclusions: Although our results proved the likely involvement of host genetic factors pointed out by previous studies looking into severity of COVID-19 disease, careful considerations of the molecular-testing strategies and the evaluated genomic positions may have a strong impact on the utility of genomic testing.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9830622 | PMC |
http://dx.doi.org/10.1186/s12864-022-09084-5 | DOI Listing |
J Microbiol Immunol Infect
January 2025
Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan; Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan. Electronic address:
Background: COVID-19 mRNA vaccines have demonstrated 95 % efficacy in the general population. However, their immunogenicity in adolescents with Type 1 Diabetes (T1D), who exhibit weaken immune responses, remains insufficiently explored.
Methods: Longitudinal analysis of innate immune responses following PRR-agonists and BNT162b2 vaccine stimulations, along with S-specific antibody responses, memory T cell recall responses, and RNA-sequencing were assessed in eight T1D adolescents and 16 healthy controls at six different timepoints.
J Microbiol Immunol Infect
December 2024
Department of Internal Medicine, Chi Mei Medical Center, Tainan, Taiwan. Electronic address:
Background: This study analyzed the epidemiological trends of three significant respiratory infectious diseases in Taiwan: invasive pneumococcal disease (IPD), influenza with severe complications, and tuberculosis during post-COVID-19 pandemic period.
Methods: We utilized data from Taiwan's Centers for Disease Control and Prevention (CDC) website and classified the COVID-19 prevention policies into three phases for the year 2021, 2022, and 2023. We then performed a statistical analysis of reported case numbers for the three respiratory diseases during the 3-year period using the Kruskal-Wallis test, followed by joinpoint regression model for the identification of seasonal distribution and variation.
Can J Ophthalmol
January 2025
MD, FRCSC, Department of Ophthalmology, University of Manitoba, Winnipeg, MB, Canada; Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada.
Life Sci
January 2025
Public Health - Seattle & King County, Seattle, WA, USA; Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA, USA; Department of Epidemiology, University of Washington, Seattle, WA, USA.
This review aims to describe the neurologic post-COVID-19 conditions (PCC, also known as "long COVID"), a complex array of diagnoses that can occur following recovery from acute COVID-19. The review also includes clinical considerations for the recognition, diagnosis and management of neurologic manifestations of PCC. Cognitive impairment ("Brain Fog"), headaches, and neuropathies are specifically reviewed.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO, Clayton, VIC 3168, Australia.
Nanotechnology involves the utilization of materials with exceptional properties at the nanoscale. Over the past few years, nanotechnologies have demonstrated significant potential in improving human health, particularly in medical treatments. The self-assembly characteristic of RNA is a highly effective method for designing and constructing nanostructures using a combination of biological, chemical, and physical techniques from different fields.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!