A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Molecular Resolution Nanostructure and Dynamics of the Deep Eutectic Solvent-Graphite Interface as a Function of Potential. | LitMetric

Interest in deep eutectic solvents (DESs), particularly for electrochemical applications, has boomed in the past decade because they are more versatile than conventional electrolyte solutions and are low cost, renewable, and non-toxic. The molecular scale lateral nanostructures as a function of potential at the solid-liquid interface-critical design parameters for the use of DESs as electrochemical solvents-are yet to be revealed. In this work, in situ amplitude modulated atomic force microscopy complemented by molecular dynamics simulations is used to probe the Stern and near-surface layers of the archetypal and by far most studied DES, 1:2 choline chloride:urea (reline), at the highly orientated pyrolytic graphite surface as a function of potential, to reveal highly ordered lateral nanostructures with unprecedented molecular resolution. This detail allows identification of choline, chloride, and urea in the Stern layer on graphite, and in some cases their orientations. Images obtained after the potential is switched from negative to positive show the dynamics of the Stern layer response, revealing that several minutes are required to reach equilibrium. These results provide valuable insight into the nanostructure and dynamics of DESs at the solid-liquid interface, with implications for the rational design of DESs for interfacial applications.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202204993DOI Listing

Publication Analysis

Top Keywords

function potential
12
molecular resolution
8
nanostructure dynamics
8
deep eutectic
8
dess electrochemical
8
lateral nanostructures
8
stern layer
8
molecular
4
resolution nanostructure
4
dynamics
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!