A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Objective hand eczema severity assessment with automated lesion anatomical stratification. | LitMetric

Hand eczema (HE) is one of the most frequent dermatoses, known to be both relapsing and remitting. Regular and precise evaluation of the disease severity is key for treatment management. Current scoring systems such as the hand eczema severity index (HECSI) suffer from intra- and inter-observer variance. We propose an automated system based on deep learning models (DLM) to quantify HE lesions' surface and determine their anatomical stratification. In this retrospective study, a team of 11 experienced dermatologists annotated eczema lesions in 312 HE pictures, and a medical student created anatomical maps of 215 hands pictures based on 37 anatomical subregions. Each data set was split into training and test pictures and used to train and evaluate two DLMs, one for anatomical mapping, the other for HE lesions segmentation. On the respective test sets, the anatomy DLM achieved average precision and sensitivity of 83% (95% confidence interval [CI] 80-85) and 85% (CI 82-88), while the HE DLM achieved precision and sensitivity of 75% (CI 64-82) and 69% (CI 55-81). The intraclass correlation of the predicted HE surface with dermatologists' estimated surface was 0.94 (CI 0.90-0.96). The proposed method automatically predicts the anatomical stratification of HE lesions' surface and can serve as support to evaluate hand eczema severity, improving reliability, precision and efficiency over manual assessment. Furthermore, the anatomical DLM is not limited to HE and can be applied to any other skin disease occurring on the hands such as lentigo or psoriasis.

Download full-text PDF

Source
http://dx.doi.org/10.1111/exd.14744DOI Listing

Publication Analysis

Top Keywords

hand eczema
16
eczema severity
12
anatomical stratification
12
lesions' surface
8
dlm achieved
8
precision sensitivity
8
anatomical
7
eczema
5
objective hand
4
severity
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!