The current study developed a novel aqua-compatible and naked-eye portable solid-state opto-sensor for selective and sensitive detection of ultra-trace Hg ions. The developed chemosensor was fabricated by the direct impregnation of a chromoionophoric probe composed of 2,3-bis((4-isopropylbenzylidene)amino)maleonitrile (PDPM) onto the surface of structurally tailored porous polymer monolithic framework. The template exhibited a highly porous network with greater surface area, which led to the effective anchoring of probe molecules onto the surface of the polymer template, thus serving as an efficient platform to constitute a regenerative solid-state chemosensor. The sensor rendered a superior color shift from dull white to dijon yellow after complexing with Hg. The surface, structural, and morphological aspects of the sensor were evaluated using FE-SEM, HR-TEM, EDAX, SAED, p-XRD, N adsorption isotherm, and XPS. Rigorous optimization of the effects of different analytical parameters on the sensing performance of the PDPM sensor material was ensured. The monolithic sensor had an optimum sensing performance at pH 8.0, rapid signal response kinetics of 60s and a broad linear response range of 0.5-150.0 μg/L with a 0.22 μg/L detection limit. Furthermore, the sensor was also tolerant of foreign matrix constituents, thereby enabling it to be highly selective in detecting Hg. Sensor recovery was analyzed to be possible via Hg desorption using 0.01 M EDTA without compromising its sensing performance. It had reutilization potential for up to eight regenerative cycles with excellent data reliability (recovery ≥99.4% and RSD ≤1.4%). The practicability of the fabricated sensor was investigated using various water and cigarette samples. Experimental data revealed that the developed chromoionophoric sensor was reusable, eco-friendly, low-cost, and possessed superior sensing capabilities, making it more feasible for on-site analysis of environmental samples. The designed sensor has the potential for further investigations and applications as a sensor kit for facilitating heavy metal detection in remote places.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envres.2023.115210 | DOI Listing |
Mikrochim Acta
January 2025
College of Geography and Environmental Sciences, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, 321004, China.
Myoglobin (Mb), an important cardiac marker, plays a crucial role in diagnosing, monitoring, and evaluating the condition of patients with cardiovascular diseases. Here, we propose a label-free photoelectrochemical (PEC) sensor for the detection of Mb through target regulated the photoactivity of AgS/FeOOH heterojunction. The AgS/FeOOH nanospindles were synthesized and served as a sensing platform for the fabrication of bio-recognized process for Mb.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Precision Instrument and Optoelectronics Engineering, Tianjin University, 92 Weijin Road, Tianjin 300072, China.
Traditional tactile sensors are single-function, and it is difficult to meet the needs of applications in complex environments. This paper describes the development and applications of flexible tactile sensors with cilia based on magnetoelectric composites made of neodymium iron boron (NdFeB) microparticles with a silver (Ag) nanoshell in polydimethylsiloxane (PDMS). These sensors adopt the inherent magnetism of NdFeB microparticles and the excellent conductivity of the Ag coating.
View Article and Find Full Text PDFBiophys J
January 2025
Department of Pharmacology, University of California Davis, California 95616.
In every heartbeat, cardiac muscle cells perform excitation-Ca signaling-contraction (EC) coupling to pump blood against the vascular resistance. Cardiomyocytes can sense the mechanical load and activate mechano-chemo-transduction (MCT) mechanism, which provides feedback regulation of EC coupling. MCT feedback is important for the heart to upregulate contraction in response to increased load to maintain cardiac output.
View Article and Find Full Text PDFSci Rep
January 2025
School of Electronics and Information, Xijing University, Xi'an, 710123, China.
To enhance high-frequency perceptual information and texture details in remote sensing images and address the challenges of super-resolution reconstruction algorithms during training, particularly the issue of missing details, this paper proposes an improved remote sensing image super-resolution reconstruction model. The generator network of the model employs multi-scale convolutional kernels to extract image features and utilizes a multi-head self-attention mechanism to dynamically fuse these features, significantly improving the ability to capture both fine details and global information in remote sensing images. Additionally, the model introduces a multi-stage Hybrid Transformer structure, which processes features at different resolutions progressively, from low resolution to high resolution, substantially enhancing reconstruction quality and detail recovery.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia (UKM), 43600, Bangi, Selangor, Malaysia.
This research presents the design and analysis of a compact metamaterial (MTM)-based star-shaped split-ring resonator (SRR) enclosed in a square, constructed on a cost-effective substrate for liquid chemical sensing applications. The designed structure has dimensions of 10 × 10 mm and is optimized for detecting adulteration in edible oils. When the sample holder is filled with different percentages of oil samples, the resonance frequency of the MTM-based SRR sensor shift significantly.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!