Purpose: Wetsuits have been shown to change swim biomechanics and, thus, increase performance, but not all athletes are comfortable with their use because of possible modifications in motor coordination. The aim of this study was to evaluate the effects of wetsuit use on biomechanical, physiological, and perceptual variables.
Methods: Eleven national- and international-level triathletes, familiar with wetsuit use, performed 7 × 200-m front crawl at constant preset speed twice, with and without a full wetsuit. The trunk incline (TI) and index of coordination (IdC) were measured stroke by stroke using video analysis. Stroke, breaths, and kick count, and timing (as breathing/kick action per arm-stroke cycle); stroke length (SL); and underwater length were analyzed using inertial-measurement-unit sensors. Heart rate (HR), rating of perceived exertion (RPE), and swimming comfort were monitored during the task.
Results: A lower TI; IdC; number of strokes, kicks, and breaths; HR; and RPE for each 200 m were found in wetsuit compared with swimsuit condition. Higher values of SL and underwater length were found in wetsuit, whereas no differences were found in swimming comfort and timing of kicks and breaths. An increase for swimsuit condition in number of strokes and breaths, HR, and RPE was found during the task compared with the first 200 m.
Conclusion: Wetsuit use reduces TI and, thus, drag; increases propelling proficiency; and shows lower fatigability, without modifying motor coordination, compared with swimsuit use at the same speed. The use of a wetsuit during training sessions is recommended to increase comfort and the positive effects on performance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1123/ijspp.2022-0029 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!