PTEN (phosphatase and tensin homolog deleted on chromosome 10) is a tightly regulated dual-specificity phosphatase and key regulator of the PI3K/AKT/mTOR signaling pathway. PTEN phosphorylation at its carboxy-terminal tail (CTT) serine/threonine cluster negatively regulates its tumor suppressor function by inducing a stable, closed, and inactive conformation. Germline mutations predispose individuals to hamartoma tumor syndrome (PHTS), a rare inherited cancer syndrome and, intriguingly, one of the most common causes of autism spectrum disorder (ASD). However, the mechanistic details that govern phosphorylated CTT catalytic conformational dynamics in the context of PHTS-associated mutations are unknown. Here, we utilized a comparative protein structure network (PSN)-based approach to investigate PTEN CTT phosphorylation-induced conformational dynamics specific to PTEN-ASD compared to PTEN-cancer phenotypes. Results from our study show differences in structural flexibility, inter-residue contacts, and allosteric communication patterns mediated by CTT phosphorylation, differentiating PTEN-ASD and PTEN-cancer phenotypes. Further, we identified perturbations among global metapaths and community network connections within the active site and inter-domain regions, indicating the significance of these regions in transmitting information across the PSN. Together, our studies provide a mechanistic underpinning of allosteric regulation through the coupled interplay of CTT phosphorylation conformational dynamics in PTEN-ASD and PTEN-cancer mutations. Importantly, the detailed atomistic interactions and structural consequences of variants reveal potential allosteric druggable target sites as a viable and currently unexplored treatment approach for individuals with different PHTS-associated mutations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9885960 | PMC |
http://dx.doi.org/10.1021/acs.jpcb.2c06776 | DOI Listing |
Biochem Biophys Rep
March 2025
School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India.
Ras gene is frequently mutated in cancer. Among different subtypes of Ras gene, K-Ras mutation occurs in nearly 30 % of human cancers. K-Ras mutation, specifically K-Ras (G12D) mutation is prevalent in cancers like lung, colon and pancreatic cancer.
View Article and Find Full Text PDFACS Phys Chem Au
January 2025
Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States.
In-droplet hydrogen/deuterium exchange (HDX)-mass spectrometry (MS) experiments have been conducted for peptides of highly varied conformational type. A new model is presented that combines the use of protection factors (PF) from molecular dynamics (MD) simulations with intrinsic HDX rates ( ) to obtain a structure-to-reactivity calibration curve. Using the model, the relationship of peptide structural flexibility and HDX reactivity for different peptides is elucidated.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Bioinformatics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India.
The myeloid-specific triggering receptors expressed on myeloid cells 2 (TREM2) is a group of class I receptors expressed in brain microglia plays a decisive role in neurodegenerative diseases such as Alzheimer's disease (AD) and Nasu Hakola disease (NHD). The extracellular domain (ECD) of TREM2 interacts with a wide-range of ligands, yet the molecular mechanism underlying recognition of such ligands to this class I receptor remains underexplored. Herein, we undertook a systematic investigation for exploring the mode of ligand recognition in immunoglobulin-like ectodomain by employing both knowledge-based and machine-learning guided molecular docking approach followed by the state-of-the-art all atoms molecular dynamics (MD) simulations.
View Article and Find Full Text PDFACS Macro Lett
January 2025
School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
Stimuli-responsive polymers have demonstrated significant potential in the development of smart materials due to their capacity to undergo targeted property changes in response to external physical or chemical stimuli. However, the scales of response in most existing stimuli-responsive polymer systems are mainly focused on three levels: functional units, chain conformations, or polymer topologies. Herein, we have developed a covalent polymer network (CPN) capable of converting into a supramolecular polymer network (SPN) within bulk materials directly at the scale of polymer network types.
View Article and Find Full Text PDFFEBS Lett
January 2025
PHYLIFE, Physical Life Science, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark.
5HTR is a G-protein-coupled receptor that drives many neuronal functions and is a target for psychedelic drugs. Understanding ligand interactions and conformational transitions is essential for developing effective pharmaceuticals, but mechanistic details of 5HTR activation remain poorly understood. We utilized all-atom molecular dynamics simulations and free-energy calculations to investigate 5HTR's conformational dynamics upon binding to serotonin and psilocin.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!