Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Metal-Organic frameworks (MOFs) are increasingly being investigated for the synthesis of carbon-supported metal-based ultrafine nanoparticles (UNPs). However, the collapse of the carbon framework and aggregation of metal particles in the pyrolysis process have severely hindered their stability and applications. Here, we report the synchronous nucleation pseudopyrolysis of MOFs to confine Fe/FeO UNPs in intact porous carbon nanorods (IPCNs), revealed by in situ transmission electron microscopy experiments and ex situ structure analysis. The pseudopyrolysis mechanism enables strong physical and chemical confinement effects between UNPs and carbon by moderate thermal kinetics and abundant oxygen defects. Further, this strong confinement is greatly beneficial for subsequent chemical transformations to obtain different Fe-based UNPs and excellent electrochemical performance. As a proof of concept, the as-prepared FeSe UNPs in IPCNs show superior lithium storage performance with an ultrahigh and stable capacity of 815.1 mAh g at 0.1 A g and 379.7 mAh g at 5 A g for 1000 cycles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.2c04244 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!