Nanodisc (ND)-forming membrane scaffold proteins or peptides developed from apolipoprotein A-I (apoA-I) have led to considerable promise in structural biology and therapeutic applications. However, the rationale and regularity characteristics in peptide sequence design remain inconclusive. Here, we proposed a consensus-based normalization approach through the reversed engineering of apoA-IΔ1-45 to design reconfigurable apoA-I peptide analogs (APAs) for tunable ND assembly. We present extensive morphological validations and computational simulation analyses on divergent APA-NDs that are generated by our method. Fifteen divergent APAs were generated accordingly to study the assembly machinery of NDs. We show that APA designs exhibit multifactorial influence in terms of varying APA tandem repeats, sequence composition, and lipid-to-APA ratio to form tunable diameters of NDs. There is a strong positive correlation between DMPC-to-APA ratios and ND diameters. Longer APA with more tandem repeats tends to yield higher particle size homogeneity. Our results also suggest proline is a dispensable residue for the APA-ND formation. Interestingly, proline-rich substitution not only provides an inward-bending effect in forming smaller NDs but also induces the cumulative chain flexibility that enables larger ND formation at higher lipid ratios. Additionally, proline-tryptophan residues in APAs play a dominant role in forming larger NDs. Molecular simulation shows that enriched basic and acidic residues in APAs evoke abundant hydrogen-bond and salt bridge networks to reinforce the structural stability of APA-NDs. Together, our findings provide a rational basis for understanding APA design. The proposed model could be extended to other apolipoproteins for desired ND engineering.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.2c03082 | DOI Listing |
J Pharmacokinet Pharmacodyn
January 2025
Department of Clinical Pharmacy and Pharmacy Administration, West China school of Pharmacy, Sichuan University, Chengdu, 610064, China.
Alogliptin is a highly selective inhibitor of dipeptidyl peptidase-4 and primarily excreted as unchanged drug in the urine, and differences in clinical outcomes in renal impairment patients increase the risk of serious adverse reactions. In this study, we developed a comprehensive physiologically-based quantitative systematic pharmacology model of the alogliptin-glucose control system to predict plasma exposure and use glucose as a clinical endpoint to prospectively understand its therapeutic outcomes with varying renal function. Our model incorporates a PBPK model for alogliptin, DPP-4 activity described by receptor occupancy theory, and the crosstalk and feedback loops for GLP-1-GIP-glucagon, insulin, and glucose.
View Article and Find Full Text PDFPhotosynth Res
January 2025
Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan.
Pheophytin-a derivatives possessing plastoquinone and phylloquinone analogs in the peripheral 3-substituent were prepared by Friedel-Crafts reactions of a 3-hydroxymethyl-chlorin as one of the chlorophyll-a derivatives with benzo- and naphthohydroquinones, respectively, and successive oxidation of the 1,4-dihydroxy-aryl groups in the resulting dehydration products. The 3-quinonylmethyl-chlorins exhibited ultraviolet-visible absorption and circular dichroism spectra in acetonitrile, which were composed of those of the starting 3-hydroxymethyl-chlorin and the corresponding methylated benzo- and naphthoquinones. No intramolecular interaction between the chlorin and quinone π-systems was observed in the solution owing to the methylene spacer.
View Article and Find Full Text PDFNat Methods
January 2025
Research Institute of Molecular Pathology (IMP), Vienna BioCenter, Vienna, Austria.
Despite significant advancements in sample preparation, instrumentation and data analysis, single-cell proteomics is currently limited by proteomic depth and quantitative performance. Here we demonstrate highly improved depth of proteome coverage as well as accuracy and precision for quantification of ultra-low input amounts. Using a tailored library, we identify up to 7,400 protein groups from as little as 250 pg of HeLa cell peptides at a throughput of 50 samples per day.
View Article and Find Full Text PDFDiabetologia
January 2025
Internal Medicine Department, Endocrine Division (SEMPR), Universidade Federal do Paraná, Curitiba, Brazil.
Aims/hypothesis: COMBINE 2 assessed the efficacy and safety of once-weekly IcoSema (a combination therapy of basal insulin icodec and semaglutide) vs once-weekly semaglutide (a glucagon-like peptide-1 analogue) 1.0 mg in individuals with type 2 diabetes inadequately managed with GLP-1 receptor agonist (GLP-1 RA) therapy, with or without additional oral glucose-lowering medications.
Methods: This 52 week, randomised, multicentre, open-label, parallel group, Phase IIIa trial was conducted across 121 sites in 13 countries/regions.
Curr Microbiol
January 2025
Institute of Agricultural Environmental Resources, Yunnan Academy of Agricultural Sciences, Kunming, 650205, People's Republic of China.
A novel phosphate-solubilizing and zinc-solubilizing actinobacterium strain YIM S08009 was isolated from rhizosphere soil collected from Pinus yunnanensis in Wuliangshan National Nature Reserve, Pu'er City, Yunnan Province, southwest PR China. Cells of strain YIM S08009 were Gram-stain-positive, non-motile, irregular rods to cocci, and formed yellow and white colonies on nutrient agar. Growth was observed at 10-40 °C (optimum 25-35 °C), pH 6.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!