A synthetic platform for industrially applicable two-dimensional (2D) semiconductors that addresses the paramount issues associated with large-scale production, wide-range photosensitive materials, and oxidative stability has not yet been developed. In this study, we attained the 6 in. scale production of 2D SnSe semiconductors with spatial homogeneity using a rational synthetic platform based on the thermal decomposition of solution-processed single-source precursors. The long-range structural and chemical homogeneities of the 2D SnSe layers are manifested using comprehensive spectroscopic analyses. Furthermore, the capability of the SnSe-based photodetectors for broadband photodetection is distinctly verified. The photoresponsivity and detectivity of the SnSe-based photodetectors are 5.89 A W and 1.8 × 10 Jones at 532 nm, 1.2 A W and 3.7 × 10 Jones at 1064 nm, and 0.14 A W and 4.3 × 10 Jones at 1550 nm, respectively. The minimum rise times for the 532 and 1064 nm lasers are 62 and 374 μs, respectively. The photoelectrical analysis of the 5 × 5 SnSe-based photodetector array reveals 100% active devices with 95.06% photocurrent uniformity. We unequivocally validated that the air and thermal stabilities of the photocurrent yielded from the SnSe-based photodetector are determined to be >30 d in air and 160 °C, respectively, which are suitable for optoelectronic applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.2c09854DOI Listing

Publication Analysis

Top Keywords

synthetic platform
12
snse-based photodetectors
8
snse-based photodetector
8
wafer-scale production
4
production two-dimensional
4
two-dimensional tin
4
tin monoselenide
4
monoselenide expandable
4
expandable synthetic
4
platform van
4

Similar Publications

Drug Development.

Alzheimers Dement

December 2024

Merry Life Biomedical Company, Ltd., Tainan City, Taiwan, Taiwan.

Background: Alzheimer's disease (AD) is complex in pathogenesis and related to aging biology, especially in late-onset AD. We identified a novel synthetic curcumin analog TML-6 through the platform of 6 biomarkers of anti-aging, anti-inflammation, and anti-Aβ as the potential AD drug candidate. TML-6 exhibits multi-target effects on AD pathogenesis, including the activation of NrF-2, the regulation of autophagic machinery through mTOR, the inhibition of APP synthesis and reduction of Aβ, the upregulation of ApoE, and the inhibition of microglial activation.

View Article and Find Full Text PDF

Aminopyridines belong to a class of compounds that are monoamino and diamino derivatives of pyridine. They work primarily by blocking voltage-gated potassium channels in a dose-dependent manner. Essential heterocycles used extensively in synthetic, natural products, and medicinal chemistry are aminopyridine and its derivatives.

View Article and Find Full Text PDF

Atomically precise nanoclusters can be assembled into ordered superlattices with unique electronic, magnetic, optical and catalytic properties. The co-crystallization of nanoclusters with functional organic molecules provides opportunities to access an even wider range of structures and properties, but can be challenging to control synthetically. Here we introduce a supramolecular approach to direct the assembly of atomically precise silver nanoclusters into a series of nanocluster‒organic ionic co-crystals with tunable structures and properties.

View Article and Find Full Text PDF

Living Cell-Mediated Self-Assembly: From Monomer Design and Morphology Regulation to Biomedical Applications.

ACS Nano

January 2025

Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, P. R. China.

The self-assembly of molecules into highly ordered architectures is a ubiquitous and natural process, wherein molecules spontaneously organize into large structures to perform diverse functions. Drawing inspiration from the formation of natural nanostructures, cell-mediated self-assembly has been developed to create functional assemblies both inside and outside living cells. These techniques have been employed to regulate the cellular world by leveraging the dynamic intracellular and extracellular microenvironment.

View Article and Find Full Text PDF

The Natural Product Research Laboratory (NPRL) of China Medical University Hospital (CMUH) was established in collaboration with CMUH and Professor Kuo-Hsiung Lee from the University of North Carolina at Chapel Hill. The laboratory collection features over 6000 natural products worldwide, including pure compounds and semi-synthetic derivatives. This is the most comprehensive and fully operational natural product database in Taiwan.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!