A key question in biology is why genomic variation persists in a population for extended periods. Recent studies have identified examples of genomic deletions that have remained polymorphic in the human lineage for hundreds of millennia, ostensibly owing to balancing selection. Nevertheless, genome-wide investigation of ancient and possibly adaptive deletions remains an imperative exercise. Here, we demonstrate an excess of polymorphisms in present-day humans that predate the modern human-Neanderthal split (ancient polymorphisms), which cannot be explained solely by selectively neutral scenarios. We analyze the adaptive mechanisms that underlie this excess in deletion polymorphisms. Using a previously published measure of balancing selection, we show that this excess of ancient deletions is largely owing to balancing selection. Based on the absence of signatures of overdominance, we conclude that it is a rare mode of balancing selection among ancient deletions. Instead, more complex scenarios involving spatially and temporally variable selective pressures are likely more common mechanisms. Our results suggest that balancing selection resulted in ancient deletions harboring disproportionately more exonic variants with GWAS (genome-wide association studies) associations. We further found that ancient deletions are significantly enriched for traits related to metabolism and immunity. As a by-product of our analysis, we show that deletions are, on average, more deleterious than single nucleotide variants. We can now argue that not only is a vast majority of common variants shared among human populations, but a considerable portion of biologically relevant variants has been segregating among our ancestors for hundreds of thousands, if not millions, of years.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9943071 | PMC |
http://dx.doi.org/10.7554/eLife.79111 | DOI Listing |
Front Med (Lausanne)
January 2025
College of Medicine, Jazan University, Jazan, Saudi Arabia.
Background: Critical care medicine (CCM) faces challenges in attracting new physicians due to its demanding nature. Understanding medical students' and interns' perceptions of CCM is essential to address physician shortages and improve medical training.
Objective: To evaluate the factors influencing specialty selection and explore perceptions of final-year medical students and interns toward CCM at Jazan University.
Front Immunol
January 2025
Department of Medical Laboratory, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China.
Background: Multidrug-resistant Klebsiella pneumoniae (MDR-KP) infections pose a significant global healthcare challenge, particularly due to the high mortality risk associated with septic shock. This study aimed to develop and validate a machine learning-based model to predict the risk of MDR-KP-associated septic shock, enabling early risk stratification and targeted interventions.
Methods: A retrospective analysis was conducted on 1,385 patients with MDR-KP infections admitted between January 2019 and June 2024.
Background And Aims: The human body requires a relatively little quantity of sodium to transmit nerve impulses, contract and relax muscles, and maintain appropriate water and mineral balance and which is typically added from diets. The study aimed to assess the level of knowledge, attitude, and practice regarding high salt intake and their association with hypertension among rural women of a selected community in Chandpur.
Methods: A cross-sectional study was adopted to collect data from 250 households of Chandpur district.
J Int Soc Prev Community Dent
December 2024
College of Dentistry, Mosul University, Mosul, Iraq.
Background And Aim: In dental clinics, disinfecting alginate impression materials is a critical practice to prevent cross-infection. Recently, zinc oxide nanoparticles (ZnO NPs) have been explored for their potential antimicrobial properties, making them promising additives for dental materials. This study investigates the antimicrobial activity of ZnO NPs incorporated into alginate impression materials and assesses the impact on material flow.
View Article and Find Full Text PDFRSC Adv
January 2025
State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University (NPU), Shaanxi Joint Laboratory of Graphene Xi'an 710072 China
The oxidative dehydrogenation of propane with CO (CO-ODP) is a green industrial process for producing propene. Cerium oxide-supported platinum-based (Pt/CeO) catalysts exhibit remarkable reactivity toward propane and CO due to the unique delicate balance of C-H and C[double bond, length as m-dash]O bond activation. However, the simultaneous activation and cleavage of C-H, C-C, and C-O bonds on Pt/CeO-based catalysts may substantially impede the selective activation of C-H bonds during the CO-ODP process.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!