Candida albicans is an opportunist pathogen responsible for a large spectrum of infections, from superficial mycosis to systemic diseases known as candidiasis. During infection in vivo, Candida albicans must adapt to host microenvironments and this adaptive response is crucial for the survival of this organism, as it facilitates the effective assimilation of alternative carbon sources others than glucose. We performed a global proteomic analysis on the global changes in protein abundance in response to changes in micronutrient levels, and, in parallel, explored changes in the intracellular redox and metabolic status of the cells. We show here that each of the carbon sources considered - glucose, acetate and lactate - induces a unique pattern of response in C. albicans cells, and that some conditions trigger an original and specific adaptive response involving the adaptation of metabolic pathways, but also a complete remodeling of thiol-dependent antioxidant defenses. Protein S-thiolation and the overproduction of reduced glutathione are two components of the response to high glucose concentration. In the presence of acetate, glutathione-dependent oxidative stress occurs, reduced thiol groups bind to proteins, and glutathione is exported out of the cells, these changes probably being triggered by an increase in glutathione-S-transferases. Overall, our results suggest that the role of cellular redox status regulation and defenses against oxidative stress, including the thiol- and glutathione-dependent response, in the adaptive response of C. albicans to alternative carbon sources should be reconsidered.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1042/BCJ20220505 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!